Math, asked by Anonymous, 3 months ago

find the value of a and b
please answer it correctly​

Attachments:

Answers

Answered by richapariya121pe22ey
1

Step-by-step explanation:

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  +  \frac{3 -  \sqrt{7} }{3 +  \sqrt{7} }  \\  =  \frac{(3 +  \sqrt{7} )(3 +  \sqrt{7}) + (3 -  \sqrt{7}  )(3 -  \sqrt{7} )}{(3 -  \sqrt{7} )(3 +  \sqrt{7} )}  \\  =  \frac{ {(3 +  \sqrt{7}) }^{2}  +  {(3 -  \sqrt{7}) }^{2} }{ ({3})^{2} -  {( \sqrt{7} )}^{2} }  \\  =  \frac{ 9 + 6 \sqrt{7} + 7 + 3 - 6 \sqrt{7} + 7  }{9 - 7}  \\  =  \frac{26}{2}  = 13

a = 13, b = 0

Answered by HorridAshu
0

Step-by-step explanation:

\begin{gathered} \frac{3 + \sqrt{7} }{3 - \sqrt{7} } + \frac{3 - \sqrt{7} }{3 + \sqrt{7} } \\ = \frac{(3 + \sqrt{7} )(3 + \sqrt{7}) + (3 - \sqrt{7} )(3 - \sqrt{7} )}{(3 - \sqrt{7} )(3 + \sqrt{7} )} \\ = \frac{ {(3 + \sqrt{7}) }^{2} + {(3 - \sqrt{7}) }^{2} }{ ({3})^{2} - {( \sqrt{7} )}^{2} } \\ = \frac{ 9 + 6 \sqrt{7} + 7 + 3 - 6 \sqrt{7} + 7 }{9 - 7} \\ = \frac{26}{2} = 13\end{gathered}</p><p>a = 13, b = 0

Similar questions