Math, asked by r4728207anRashmi, 1 month ago

find the value of a and b
please help me to solve it
don't type irtrravalent​

Attachments:

Answers

Answered by ImperialGladiator
7

Answer:

{\bf (i)} \: a = 5 \: {\rm and }\: b = 2

{\bf (ii)} \: a = -\dfrac{19}{7}\:{\rm and }\: b = \dfrac{5}{7}

Explanation:

Solving (i) :-

 \implies \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}   -   \sqrt{2} }  = a + b \sqrt{6}

Rationalise the denominator by taking L. H. S.

 =  \dfrac{( \sqrt{3} +  \sqrt{2}  )}{( \sqrt{3} -  \sqrt{2}  )}

 =  \dfrac{( \sqrt{3} +  \sqrt{2}  )}{( \sqrt{3}  -   \sqrt{2}  )}  \times  \dfrac{( \sqrt{3} +  \sqrt{2}  )}{( \sqrt{3}  +   \sqrt{2}  )}

Using identity :- (a - b)(a + b) = -

 =  \dfrac{3 +  \sqrt{6} +  \sqrt{6}  + 2 }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }

 =  \dfrac{5 + 2 \sqrt{6} }{1}

 = 5 + 2 \sqrt{6}

On comapring with R. H. S. :-

 \implies \: 5 + 2 \sqrt{6}  = a + b \sqrt{6}

 \therefore \: a =  5 \: { \rm \: and} \: b = 2

________________________

Solving (ii) :-

 \implies \:  \dfrac{( \sqrt{5}  +  \sqrt{3}) }{(2 \sqrt{5} - 3 \sqrt{3}  )}  = a - b \sqrt{15}

Rationalise the denominator of L. H. S. :-

 =  \dfrac{( \sqrt{5} +  \sqrt{3}  )}{(2 \sqrt{5} - 3 \sqrt{3}  )}  \times  \dfrac{(2 \sqrt{5}  + 3 \sqrt{3} )}{(2 \sqrt{5}  + 3 \sqrt{3})}

By the identity :- (a - b)(a + b) = a² - b²

 =  \dfrac{19 + 5 \sqrt{15} }{ {(2 \sqrt{5} )}^{2}  -  {(3 \sqrt{3}) }^{2} }

 =  \dfrac{19 + 5 \sqrt{15} }{20 - 27}

 =   \dfrac{19 + 5 \sqrt{15} }{-7}

On comparing with R. H. S. :-

 \implies \dfrac{19 + 5\sqrt{15}}{-7} = a - b \sqrt{15}

\implies \dfrac{-19}{7} - \dfrac{5}{7}\sqrt{15} = a - b\sqrt{15}

\therefore \: a = -\dfrac{19}{7}\:{\rm and }\: b = \dfrac{5}{7}

Similar questions