Math, asked by rakshita346, 1 year ago

Find the value of a and b
root 3 - 1 / root 3 + 1 = a + b root 3
please answer fast

Answers

Answered by Anonymous
1

Answer:-

a = 2

b = -1

Given :-

 \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3}

To find :-

The value of a and b.

Solution:-

\implies  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}

 \huge \boxed {(a+b) (a-b) = a^2 -b^2}

\implies  \dfrac{( \sqrt{3}  - 1) ^{2} }{( \sqrt{3})^{2}  -  {(1)}^{2}  }  = a + b \sqrt{3}

\implies  \dfrac{ { (\sqrt{3} )}^{2}  + 1 - 2. \sqrt{3}.1 }{3 - 1}  = a + b \sqrt{3}

\implies  \dfrac{3 + 1 - 2 \sqrt{3} }{2}  = a + b \sqrt{3}

\implies  \dfrac{4 - 2 \sqrt{3} }{2}  = a + b \sqrt{3}

\implies  \dfrac{4}{2}  -  \dfrac{2 \sqrt{3} }{2} = a + b \sqrt{3}

\implies 2 -  \sqrt{3}  = a + b \sqrt{3}

By comparing,

a = 2 \:  \: b \:   =  - 1

Similar questions