Math, asked by Ay5mangelinavyankj, 1 year ago

Find the value of A and B so that polynomial (x4+ax3-7x2+8x+b) is exactly divisible by(x+2) as well as (x+3).

Answers

Answered by LovelyG
276

  \red{\boxed{\fbox{ \fbox{ \bf answer}}}}

See the picture above attached!

Thanks!!

Attachments:
Answered by Alcaa
84

The value of a = \frac{22}{19}  and the value of b = \frac{708}{19} .

Step-by-step explanation:

We are given that polynomial (x4+ax3-7x2+8x+b) is exactly divisible by (x+2) as well as (x+3).

The two divisors in the question are (x + 2) and (x + 3). As it is given that the given polynomial is divisible by both these divisors, that means;

x + 2 = 0   and   x + 3 = 0

x = -2  and  x = -3 will make the remainder zero when these values of x are substituted in the given polynomial.

f(x) = x^{4}+ax^{3}  -7x^{2} +8x+b. So, f(-2) and f(-3) will be equal to zero.

f(-2) = (-2)^{4}+a(-2)^{3}  -7(-2)^{2} +8(-2)+b =0

f(-3) = (-3)^{4}+a(-3)^{3}  -7(-3)^{2} +8(-3)+b =0

f(-2) = 16-8a  -28 -16+b =0

       = -8a+b  -28  =0  ---------------- [Equation 1]

f(-3) = 81-27a -63 -24+b =0

      = -27a+b -6 =0   ---------------- [Equation 2]

Now using the elimination method to find the values of a and b;

                    -8a+b  -28  =0

                    -27a+b -6 =0

                    +        -     +       -  

                         19a - 22 = 0

                            a = \frac{22}{19}

Putting the value of a in equation 1 we get;

                          -8a+b  -28  =0

                          -8(\frac{22}{19}) +b  -28  =0

                             b  =  28 + \frac{176}{19}

                             b  =  \frac{708}{19} .

Hence, the value of a = \frac{22}{19}  and the value of b = \frac{708}{19} .

Similar questions