Math, asked by rudrajeetverma27013d, 1 month ago

find the value of a and b so that the polynomial p(x) and q(x) have (x2-x-12) as their hcf
where p(x)=(x2-5x+4)(x2+5x+a)
q(x)= (x2+5x+6)(x2-5x-2b)

Answers

Answered by chandanapukalyani
3

so 3,-4 are the roots of eqn.

subs in p(x)

(9-15+4)(9+15+a)=0

(-2)(24+a)=0

-48-4a=0

-4a=48

a=-12

3 is subs in q(x)

(9+15+6)(9-15-2b)=0

-30(6+2b)=0

-180=60b

b=3

Attachments:
Answered by AnkitaSahni
3

The values of a and b are 6, -2  

Given:

$p(x)=\left(x^{2}-5 x+4\right)\left(x^{2}+5 x+a\right)$ and $q(x)=\left(x^{2}+5x+6\right)\left(x^{2}-5x-2b\right)$have x^{2} -x-12 as their HCF

To find:

The values of a and b

Solution:

The polynomial p(x) and q(x) have HCF  x^{2} -x-12

h(x)=(x-4) (x+3)

4,-3 are the factors for the x^{2} -x-12

Since, $p(x)=\left(x^{2}-5 x+4\right)\left(x^{2}+5 x+a\right)$

⇒p(x) = h(x)f(x), where, f(x) is a factor h(x)

Now, factorize the  x^{2}-5 x+4

=(x-4)(x-1) .......(1)

$\left(x^{2}-5 x+4\right)\left(x^{2}+5 x+a\right)= (x-4)(x+3) f(x)

Substitute equation (1) in above equation

$(x-4)(x-1)\left(x^{2}+5 x+a\right)=(x-4)(x+3)f(x)$

$(x-1)\left(x^{2}+5 x+a\right)=(x+3)f(x)$

Consider, x=-3

(-3-1)((-3)^{2} +5(-3)+a)=0

9-15+a=0

a=6

Similarly, $q(x)=\left(x^{2}+5x+6\right)\left(x^{2}-5x+2b\right)$

⇒q(x) = h(x)g(x), where, g(x) is a factor h(x)

Now, factorize the x^{2}+5x+6

=(x+3)(x+2)........(2)

$\left(x^{2}+5 x+6\right)\left(x^{2}-5 x+2b\right)= (x-4)(x+3) g(x)

Substitute equation (2) in above equation

$(x+3)(x+2)\left(x^{2}-5 x+2b\right)= (x-4)(x+3) g(x)

$(x+2)\left(x^{2}-5 x+2b\right)= (x-4)g(x)

Consider, x=4

4^{2}-5 (4)+2b= 0

4+2b=0

b=-2

Hence, the values of a and b are 6,-2

#SPJ2

Similar questions