find the value of a and b so that the polynomial x3 - ax2 - 13x +b has x-1 and x+3 as factors
Answers
Answered by
18
x-1=0 , x+3=0
x=1 , x= -3
p(x)=x3-ax2-13x+b
p(1)=(1)3-a(1)2-13×1+b
=1-a-13+b
=a-12+b
=a=12-b
p(-3)=(-3)3-a(-3)2-13(-3)+b
=-27-9a+39+b
=12-9a+b
=b=9a-12
b=9(12-b)-12
b=108-9b-12
b=96-9b
b+9b=96
10b=96
b=96/10
b=9.6
a=12-b
a=12-9.6
a=2.4
i hope it helps you
x=1 , x= -3
p(x)=x3-ax2-13x+b
p(1)=(1)3-a(1)2-13×1+b
=1-a-13+b
=a-12+b
=a=12-b
p(-3)=(-3)3-a(-3)2-13(-3)+b
=-27-9a+39+b
=12-9a+b
=b=9a-12
b=9(12-b)-12
b=108-9b-12
b=96-9b
b+9b=96
10b=96
b=96/10
b=9.6
a=12-b
a=12-9.6
a=2.4
i hope it helps you
Answered by
1
Answer:
a=2.4 ; b=96/10
Step-by-step explanation:
x-1=0 , x+3=0
x=1 , x= -3
p(x)=x3-ax2-13x+b
p(1)=(1)3-a(1)2-13×1+b
=1-a-13+b
=a-12+b
=a=12-b
p(-3)=(-3)3-a(-3)2-13(-3)+b
=-27-9a+39+b
=12-9a+b
=b=9a-12
b=9(12-b)-12
b=108-9b-12
b=96-9b
b+9b=96
10b=96
b=96/10
b=9.6
a=12-b
a=12-9.6
a=2.4
Similar questions