Math, asked by charkhiyash, 10 months ago

Find the value of a and b so that (x+1) & (x-2) are the factors of x^2+ax^2+2x+b

Answers

Answered by Anonymous
0

When x + 1 is a factor of x² + ax² + 2x + b = 0:

x = -1

p(x) = x² + ax² + 2x + b = 0

p(-1) => (-1)² + a(-1)² + 2(-1) + b = 0

=> 1 + a - 2 + b = 0

=> a + b = 1

=> a = 1 - b ___(1)

When x - 2 is a factor of x² + ax² + 2x + b = 0:

x = 2

p(2) => (2)² + a(2)² + 2(2) + b = 0

=> 4 + 4a + 4 + b = 0

=> 8 + 4a + b = 0

Put (1):

=> 8 + 4(1 - b) + b = 0

=> 8 + 4 - 4b + b = 0

=> 3b = 12

=> b = 4

a = 1 - b = 1 - 4

=> a = -3

Answered by Anonymous
0

Aɴꜱᴡᴇʀ

\huge\sf{a= \:-3}

\huge\sf{b=4}

_________________

Gɪᴠᴇɴ

  \sf{}(x + 1) \: and \: (x - 2) \: are \: the \: factors \: of \: {x}^{2}  + a {x}^{2}  + 2x + b

_________________

ᴛᴏ ꜰɪɴᴅ

Value of a and b?????

_________________

Sᴛᴇᴘꜱ

  \large  \sf{}if \: (x - 1) \: is \:  a\: factor \: then \: equating \: this \: to \: 0 \\   \large\sf{}  = {x +1 = 0} \\  \sf{} = x = \:- 1 \: \\   \large\sf{}substituting \:t his \: in \:  {x}^{2}  + a {x}^{2}  + 2x + b \\  \large \sf{}p(1) =  {(-1)}^{2}  + a(-1) + 2(-1) + b \\  \large \sf{}  a+b=1\:  \: \\  \large \sf so \: a + b = 3\\ \sf a=1-b.....1

 \large \sf  {(x - 2) \: is \: a \: factor \: of \:  {x}^{2} + a {x}^{2}  + 2x + b } \\ \large \sf so \: x = 2 \\ \large \sf {2}^{2}  + a {2}^{2}  + 2(2) + b \\ \large \sf 4 + a {2}^{2}  + 4+ b \\  \sf = 8+ 4a + b ..... ...........2

So a=3-b

Sub this in 2 we get

8+4(1-b)+b=0

8+4-4b+b=0

12-3b=0

\sf{-b\frac{ -12}{3}}

b= 4

so sub this in 1

we get a=1-4

a= -3

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Similar questions