Math, asked by Samruddha95sam, 3 months ago

Find the value of A and B so that (X + 1) and (x-1) are the factor of X^4 + ax^3 - 3x^2 + 2x + b

Answers

Answered by amansharma264
4

EXPLANATION.

(x + 1) and (x - 1) are the factors of equation,

⇒ F(x) = x⁴ + ax³ - 3x² + 2x + b.

As we know that,

Zeroes of the polynomial,

⇒ (x + 1) = 0.

⇒x = -1.

Put the value of x = -1 in equation, we get.

⇒ F(-1) = (-1)⁴ + a(-1)³ - 3(-1)² + 2(-1) + b.

⇒ 1 - a - 3 - 2 + b = 0.

⇒ - a - 4 + b = 0.

⇒ b = a + 4 ⇒ (1).

⇒ (x - 1) = 0.

⇒ x = 1.

Put the value of x = 1 in equation, we get.

⇒ F(1) = (1)⁴ + a(1)³ - 3(1)² + 2(1) + b.

⇒ 1 + a - 3 + 2 + b = 0.

⇒ a + b = 0.

⇒ a = -b ⇒ (2).

From equation, (1) and (2) we get,

Put the value of equation (2) in (1) we get,

⇒ b = a + 4.

⇒ b = -b + 4.

⇒ b + b = 4.

⇒ 2b = 4.

⇒ b = 2.

Put the value of b = 2 in equation (2), we get.

⇒ a = -b.

⇒ a = -2.

Value of A = -2 & B = 2.

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \ \: :  ⟼ Let  \: f(x) =  {x}^{4}  + a {x}^{3}  -  {3x}^{2} + 2x + b

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 1 }}

\tt \ \: :  ⟼ Now, \: x + 1 \: is \: a \: factor \: of \: f(x) \:

\tt\implies \:f( - 1) = 0

\tt\implies \: {( - 1)}^{4}  + a {( - 1)}^{3} - 3 {( - 1)}^{2}   + 2( - 1) + b = 0

\tt\implies \:1 - a - 3 - 2 + b = 0

\tt\implies \:b = 4 + a \:  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

\tt \ \: :  ⟼ Now, \: again \: (x - 1) \: is \: factor \: of \: f(x)

\tt\implies \:f(1) = 0

\tt\implies \: {( 1)}^{4}  + a {(  1)}^{3} - 3 {(  1)}^{2}   + 2(  1) + b = 0

\tt\implies \:1 + a - 3 + 2 + b = 0

\tt\implies \:a + b = 0

\tt\implies \:a + 4 + a = 0 \:  \:  \:  \:  \:  \:  \:  \bigg(using \: (1) \bigg)

\tt\implies \:2a + 4 = 0

\tt\implies \:2a =  - \:  4

\tt\implies \:a \:  =  \:  -  \: 2

\tt \:  ⟼ So \: b \:  = 4 - 2 = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf So -  \:  \begin{cases} &\sf{a =  -  \: 2} \\ &\sf{b \:  =  \: 2} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions