Find the value of A and B so that (X + 1) and (x-1) are the factor of X^4 + ax^3 - 3x^2 + 2x + b
Answers
EXPLANATION.
(x + 1) and (x - 1) are the factors of equation,
⇒ F(x) = x⁴ + ax³ - 3x² + 2x + b.
As we know that,
Zeroes of the polynomial,
⇒ (x + 1) = 0.
⇒x = -1.
Put the value of x = -1 in equation, we get.
⇒ F(-1) = (-1)⁴ + a(-1)³ - 3(-1)² + 2(-1) + b.
⇒ 1 - a - 3 - 2 + b = 0.
⇒ - a - 4 + b = 0.
⇒ b = a + 4 ⇒ (1).
⇒ (x - 1) = 0.
⇒ x = 1.
Put the value of x = 1 in equation, we get.
⇒ F(1) = (1)⁴ + a(1)³ - 3(1)² + 2(1) + b.
⇒ 1 + a - 3 + 2 + b = 0.
⇒ a + b = 0.
⇒ a = -b ⇒ (2).
From equation, (1) and (2) we get,
Put the value of equation (2) in (1) we get,
⇒ b = a + 4.
⇒ b = -b + 4.
⇒ b + b = 4.
⇒ 2b = 4.
⇒ b = 2.
Put the value of b = 2 in equation (2), we get.
⇒ a = -b.
⇒ a = -2.
Value of A = -2 & B = 2.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─