Math, asked by gajaganesh8236, 2 months ago

Find the value of
a and b
Solution please ​

Attachments:

Answers

Answered by sk2881854
1

Answer:

I am not understanding of your questions

Answered by BrainlyArnab
0

Answer:

a = 2 \\ b =  \frac{5}{6}  \\

Step-by-step explanation:

 \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3} }  = a - b \sqrt{6}  \\  =  >  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{ 3\sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  = a + b \sqrt{6}  \\  =  >  \frac{ \sqrt{2}  +  \sqrt{3} (3 \sqrt{2}  + 2 \sqrt{3} }{(3 \sqrt{2) ^{2} }  -  {(2 \sqrt{3)} }^{2} }  = a + b \sqrt{6}  \\  =  >  \frac{ \sqrt{2} (3 \sqrt{2} + 2 \sqrt{3}  ) +  \sqrt{3} (3 \sqrt{2} + 2 \sqrt{3}  }{(9 \times 2) - (4 \times 3)}  = a + b \sqrt{6}  \\  =  >  \frac{6 + 2 \sqrt{6}  + 3 \sqrt{6} + 6 }{18 - 12}  =  a +  b\sqrt{6}  \\  =  >  \frac{12 + 2 \sqrt{6}  + 3 \sqrt{6} }{6}  =  a+ b \sqrt{6}  \\  =  >  \frac{12 +  \sqrt{6} (2 + 3)}{6}  =  a+  b\sqrt{6}  \\  =  >  \frac{12 +  \sqrt{6}  \times 5}{6}  = a + b \sqrt{6}  \\  =  >  \frac{12 + 5  \sqrt{6}  }{6}  =a  +  b\sqrt{6}  \\  =  >  \frac{12}{6}  +  \frac{5 \sqrt{6} }{6}  = a + b \sqrt{6}  \\  =  > 2 +  \frac{5}{6}  \sqrt{6}  = a + b \sqrt{6}  \\  =  > a = 2 \\ b =  \frac{5}{6}

hope it helps.

Similar questions