find the value of a and b such that 3+√2÷3-√2=a+b√2
Answers
Solution:-
Given:-
To Find the value of a and b
Now take
Using this identities
We get
Now compare with
We get
Given:-
\rm \implies \: \dfrac{3 + \sqrt{2} }{3 - \sqrt{2} } = a + b \sqrt{2}⟹
3−
2
3+
2
=a+b
2
To Find the value of a and b
Now take
\rm \implies \: \dfrac{3 + \sqrt{2} }{3 - \sqrt{2} } \times \dfrac{3 + \sqrt{2} }{3 + \sqrt{2} }⟹
3−
2
3+
2
×
3+
2
3+
2
\rm \implies \: \dfrac{(3 + \sqrt{2} )(3 + \sqrt{2} )}{(3 - \sqrt{2} )(3 + \sqrt{2}) }⟹
(3−
2
)(3+
2
)
(3+
2
)(3+
2
)
Using this identities
\rm \implies \: (a - b)(a + b) = {a}^{2} - {b}^{2}⟹(a−b)(a+b)=a
2
−b
2
\rm \implies \: (a + b) {}^{2} = {a}^{2} + {b}^{2} + 2ab⟹(a+b)
2
=a
2
+b
2
+2ab
We get
\rm \implies \: \dfrac{(3 + \sqrt{2} ) {}^{2} }{(3) {}^{2} - ( \sqrt{2}) {}^{2} }⟹
(3)
2
−(
2
)
2
(3+
2
)
2
\rm \implies \dfrac{9 + 2 + 2 \times 3 \times \sqrt{2} }{9 - 2}⟹
9−2
9+2+2×3×
2
\implies \: \dfrac{11 + 6 \sqrt{2} }{7}⟹
7
11+6
2
\implies \: \dfrac{11}{7} + \dfrac{6}{7} \sqrt{2}⟹
7
11
+
7
6
2
Now compare with
\rm \implies \: a + b \sqrt{2}⟹a+b
2
We get
\implies \rm \: a = \dfrac{11}{7} \: and \: b = \dfrac{6}{7}⟹a=
7
11
andb=
7
6