Math, asked by sheetal3712, 1 year ago

Find the value of a and b such that
5+√3÷7+2√3=a-b√3​

Answers

Answered by Anonymous
0

5 +  \frac{ \sqrt{3} }{7}  + 2 \sqrt{3}  = a - b \sqrt{3}

5 +  \frac{1 \sqrt{3} }{7}  + 2 \sqrt{3}  = a - b \sqrt{3}

5 +  \frac{1 \sqrt{3} }{7}  +  \frac{2 \sqrt{3}  \times 7}{1 \times 7}  = a - b \sqrt{3}

5 +  \frac{1 \sqrt{3} }{7} +  \frac{14 \sqrt{3} }{7}   = a - b \sqrt{3}

5 +  \frac{15 \sqrt{3} }{7}  = a - b \sqrt{3}

Equating corresponding rational and irrational factors, we have

a = 5

 - b \sqrt{3}  =  \frac{15 \sqrt{3} }{7}

√15 should be cncelled on both the sides

 - b =  \frac{15}{7}

b =    \frac{ - 15}{7}

so \: a = 5  \\  \\  b =  \frac{ - 15}{7}

Similar questions