Math, asked by cookiemadness245, 1 month ago

Find the value of a and b such that (5 + sqrt(3))/(7 + 2sqrt(3)) = a - b * sqrt(3)​

Answers

Answered by BilalFNA
13

ANSWER:

a =  \frac{29}{37}

b =  \frac{3}{37}

EXPLANATION:

 \frac{5 +  \sqrt{3} }{7 + 2 \sqrt{3} }  = a - b \sqrt{3}

 \frac{5 +  \sqrt{3} }{7 + 2 \sqrt{3} } \times  \frac{7 - 2 \sqrt{3} }{7 - 2 \sqrt{3} }   = a - b \sqrt{3}

 \frac{(5 +  \sqrt{3}) (7 - 2 \sqrt{3})}{(7 + 2 \sqrt{3})(7 - 2 \sqrt{3}) }  = a - b \sqrt{3}

 \frac{7(5 +  \sqrt{3} ) - 2 \sqrt{3}(5 +  \sqrt{3})  }{ {(7)}^{2}  -  {(2 \sqrt{3}) }^{2} }  = a - b \sqrt{3}

 \frac{35 + 7 \sqrt{3}  - 10 \sqrt{3} - 2( \sqrt{3})^{2}   }{49 - 4(3)} =  a - b \sqrt{3}

 \frac{35   - 3 \sqrt{3} - 2({3})  }{49 - 12}  = a - b \sqrt{3}

 \frac{35   - 3 \sqrt{3} - 6 }{37}  = a - b \sqrt{3}

 \frac{35 - 6 - 3 \sqrt{3} }{37}  = a - b \sqrt{3}

 \frac{29 - 3 \sqrt{ 3}  }{37} = a - b \sqrt{3}

 \frac{29}{37}  - \frac{3 \sqrt{3} }{37} =  a - b \sqrt{3}

 \frac{29}{37}  -  \frac{3}{37}  \sqrt{3} =  a - b \sqrt{3}

comparing \: both \: equations

a =  \frac{29}{37}

b =  \frac{3}{37}

I hope it helps you. Please mark me as BRAINLIEST if you like.

Answered by Krishrkpmlakv
2

Answer:

Step-by-step explanation:

Attachments:
Similar questions