Math, asked by jaskarandhillon806, 4 months ago

ܛܠܪ
find the value of A and B
tam (A+B) = 3 and
tam (A-B) = 1/underoot3

Answers

Answered by Anonymous
0

Tigers are preserved in Corbett National park

Answered by Anonymous
5

 \large \boxed{\large \star \:  \mathtt{answer : }}

 \sf{tan(A+B) =  \sqrt{3} } \\  \\  \sf{tan(A - B) =  \frac{1}{ \sqrt{3} } }

 \sf{we \: know : } \\  \sf{tan60 \degree =  \sqrt{3} } \\  \sf{tan(A  +  B) =  \sqrt{3} }   \\  \sf{tan(A+B) = tan60 \degree} \\  \sf{A+B = 60 \degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(i)}

  \sf{we \: know : } \\  \sf{tan30  \degree =  \frac{1}{ \sqrt{3} } } \\  \sf{tan(A - B) =  \frac{1}{ \sqrt{3}}} \\  \sf{tan(A - B) =  tan30 \degree} \\  \sf{A - B =30 \degree \:  \:  \:  \:  \:  \:  \:  \: ...(ii)}

 \sf{by \: equation \: (i) \: and \: (ii)} \\  \sf{A+ \cancel{B }= 60  \degree} \\  \sf{ + A -  \cancel{B} = 30 \degree } \\  \sf{2 A= 90 \degree } \\  \boxed{ \sf{A = 45 \degree}} \\  \sf{A +B = 60 \degree } \\  \sf{45 \degree + B = 60 \degree} \\  \sf{B = 60 \degree - 45 \degree} \\   \boxed{\sf{B = 15 \degree}}

Similar questions