Math, asked by pragatiwari14, 4 months ago

Find the value of a and b.
3  \div  \sqrt{3 + 1 }  \ + 5 \div  \sqrt{3 - 1 \:  }  = a + b \sqrt{3}

Answers

Answered by ILLUSTRIOUS27
1

Given

 \large \bf \mapsto3 \div \sqrt{3} + 1  \ + 5 \div \sqrt{3} - 1 \: = a + b \sqrt{3}

To Find

 \large \bf \mapsto \: value \: of \: a \:and \: b

Concept used

  \begin{cases}\large  \bf \: rationalisation  \:  \:  \:  \boxed{1}\\ \\  \large \bf  {a}^{2}  -  {b}^{2} = (a + b) (a - b) \:  \boxed{2} \end{cases}

Solution

 \rm \:  \dfrac{3}{ \sqrt{3} + 1 }  +  \dfrac{5}{ \sqrt{3} - 1 }

First we solve \rm \dfrac{3}{ \sqrt{3} + 1}

 \rm \:  \dfrac{3}{ \sqrt{3} + 1 }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bf \: using \boxed{1} \: rationalisation \\  \\  \implies \rm \:  \frac{3}{ \sqrt{3} + 1 }  \times   \frac{ \sqrt{3}   -  1}{ \sqrt{3}  - 1 }  \\  \\  \bf \: using \boxed{2}  \\  \\ \implies  \rm \:  \frac{3( \sqrt{3} - 1 )}{ { (\sqrt{3} )}^{2} -  {1}^{2}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm  \frac{3 \sqrt{3} - 3 }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now we solve right one

   \rm\dfrac{5 }{ \sqrt{3 }- 1}  \:  \:  \:  \:  \:  \:   \\  \\  \implies \:  \frac{5}{ \sqrt{3} - 1 } \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }   \\  \\  \implies \rm \:  \frac{5( \sqrt{3} + 1 )}{  {( \sqrt{3}) }^{2} -  {1}^{2}   }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \:  \frac{5 \sqrt{3}  + 1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now put this in equation

 \rm \:  \dfrac{3 \sqrt{3} - 3 }{2}  +  \dfrac{5 \sqrt{3}  + 1}{2}  = a + b \sqrt{3}  \\  \\  \implies \rm \:  \frac{3 \sqrt{3} - 3 + 5 \sqrt{3}   + 1}{2}  = a + b \sqrt{3}  \\  \\  \implies \rm \:  \frac{8 \sqrt{3} - 2 }{2}  = a + b \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \: taking \: common \\  \\  \implies  \rm \:  \frac{2(4 \sqrt{3}  - 1)}{2}   = a + b \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \:  - 1 + 4 \sqrt{3}  = a + b \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \underline{ \boxed{ \large \bf \: a =  - 1 \:  \:  \: and \:  \:  \: b = 4}}

Therefore a=-1 and b=4

Similar questions