Math, asked by aismem13, 1 year ago

find the value of A and B : - 3 +\sqrt{2} /3- \sqrt{2} = A + B\sqrt{2}

Answers

Answered by Anonymous
1

Given that,

 \huge{\sf{ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } = a + b \sqrt{2} }}

To find the values of a and b

Now,

 \sf{ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } } \\  \\  =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \\  \\  =  \frac{(3 +  \sqrt{2) {}^{2} } }{3 {}^{2} - ( \sqrt{2}) {}^{2}   }  \\  \\  = 9 + 2 + 6 \sqrt{2}  \\  \\  =  \huge{11 + 6 \sqrt{2}}

On comparing,

a=11 and b=6

Answered by ANGRY74
0

3 + 1  \div 3 - 1 = a + b(1)

 - 1 = a + b

HENCE, A = (-0.5)

B = (-0.5)

Similar questions