Math, asked by vedaant14, 5 months ago

find the value of 'a' and 'b'

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  = a + b \sqrt{2}

Answers

Answered by Anonymous
50

\huge{\color{lime}{\underbrace{\textsf{\textbf{\color{indigo}{Question:-}}}}}}

Find the value of a and b :-

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  = a + b \sqrt{2}

 \\  \\

\huge{\color{lime}{\underbrace{\textsf{\textbf{\color{indigo}{Answer:-}}}}}}

 =  =  >  \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \times  \frac{5 + 3 \sqrt{2} }{5 + 3 \sqrt{2} }

==> Rationalising the denominator using the identity a² + b² + 2ab = ( a+b )² and ( a-b ) ( a+b ) = a² - b²:-

 =  =  >     \frac{5²+(3 \sqrt{2)²}+2(5)(3 \sqrt{2)} }{(5)²-(3 \sqrt{2)²} }

 =  =  >  \frac{25 + 18 + 30 \sqrt{2} }{25 - 18}

 =  =  >  \frac{43 + 30 \sqrt{2} }{7}

==> Therefore, a = \frac{43}{7} and b = \frac{30}{7}.

✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️

Hope it helps you dear :)

Answered by Intelligentcat
11

Given :

:\implies\sf{ \dfrac{5 + 3 \sqrt{2}}{5 - 3 \sqrt{2}} = a + b \sqrt{2}}\\ \\

Find :

  • Find the value of " a " and " b "

Solution :

:\implies \sf{\dfrac{5 + 3 \sqrt{2}}{5 - 3 \sqrt{2}} = a + b \sqrt{2}}\\ \\

Let's solve the L.H.S side first :

 \sf{LHS = \dfrac{5 + 3 \sqrt{2}}{5 - 3 \sqrt{2}}}\\ \\

Rationalising with denominator.

Rationalising refers to multiplying \sf{(5 + 3 \sqrt{2})} with denominator and numerator.

So, then we will get the equation be like :

:\implies\sf{\dfrac{(5 + 3 \sqrt{2})}{(5 - 3 \sqrt{2})} \times \dfrac{(5 + 3 \sqrt{2})}{(5 + 3 \sqrt{2})}}\\ \\

Solving further , making identity :

:\implies \sf{\dfrac{(5 + 3 \sqrt{2})^{2}}{(5)^{2} - (3 \sqrt{2})^{2}}} \\ \\

Identity Using :

\boxed{\bf{(a + b)^{2} = a^{2} + b^{2} + 2ab}}\\ \\

\boxed{\bf{(a + b) (a - b) = a^{2} - b^{2}}}\\ \\

Now,

:\implies \sf{\dfrac{(5)^{2} + (3 \sqrt{2})^{2} + 2 \times 5 \times (3 \sqrt{2})}{(5)^{2} - (3 \sqrt{2})^{2}}} \\ \\

:\implies \sf{\dfrac{25 + 18 + 10 \times (3 \sqrt{2})}{(25 - (18)}} \\ \\

:\implies \sf{\dfrac{25 + 18 + 30 \sqrt{2})}{7}} \\ \\

:\implies \sf{\dfrac{43 + 30 \sqrt{2})}{7}} \\ \\

Now , Comparing it with RHS \sf{ a + b \sqrt{2}}

Therefore, from this we get :

:\implies \bf{\dfrac{43}{7} = a, \dfrac{30}{7}  = b} \\ \\

\boxed{\therefore \sf{a = \dfrac{43}{7} \:and\: b = \dfrac{30}{7}  = b}} \\ \\

Similar questions