Math, asked by shashwatgupta6367, 1 year ago

find the value of a and b
 \frac{5 +  \sqrt{3} }{7 - 4 \sqrt{3 } }  = 47a +  \sqrt{3 \ \: b}

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by LovelyG
7

Answer:

a = 1 and b = 27

Step-by-step explanation:

Given that -

 \implies \sf \dfrac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  = 47a +  \sqrt{3} b

Consider LHS:

 \implies \sf \dfrac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\  \implies \sf \dfrac{5 +  \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\ \implies \sf  \frac{(5 +  \sqrt{3})(7 + 4 \sqrt{3})}{(7) {}^{2}  - (4 \sqrt{3} ) {}^{2} }  \\  \\ \implies \sf  \frac{35 + 20 \sqrt{3} + 7 \sqrt{3} + 12 }{49 - 48}  \\  \\ \implies \sf  \frac{47 + 17 \sqrt{3} }{1}  \\  \\ \implies \sf 47 + 27 \sqrt{3}

On comparing LHS with RHS,

\implies \sf 47 + 27 \sqrt{3}  = 47a +  \sqrt{3} b \\  \\  \boxed{\bf  \therefore \:  a = 1 \:  \: and \:  \: b = 27}

Similar questions