Math, asked by rajjogupta317, 11 months ago

Find the value of a and b
 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  \frac{7}{11}  \sqrt{5b}

Answers

Answered by Cosmique
6

\bullet\bullet{\frak{\orange{QuesTion}}}\bullet\bullet

Find the value of a and b

\bf \frac{7+\sqrt{5} }{7-\sqrt{5} } - \frac{7-\sqrt5}{7+\sqrt5} = a + \frac{7\sqrt{5b}}{11}

\bullet\square{\frak{\orange{AnsWer}}}\square\bullet

Solving LHS

\bf LHS = \frac{7+\sqrt5}{7-\sqrt5} - \frac{7-\sqrt5}{7+\sqrt5} \\\\\bf (taking\: LCM)\:and\:using\:identity\\\bf (a+b)(a-b)=a^2-b^2\\\\= \bf \frac{(7+\sqrt5)^2-(7-\sqrt5)^2}{(7)^2 - (\sqrt5)^2} \\\\\bf = \frac{49+5+14\sqrt5-(49+5-14\sqrt5)}{49-5} \\\\=\bf \frac{49 + 5+14\sqrt5-49-5+14\sqrt5}{44} \\\\\bf = \frac{28\sqrt5}{44}

\bf = \frac{7\sqrt5}{11}\\

Comparing simplified LHS with RHS

\bf \frac{7\sqrt5}{11} =a+ \frac{7\sqrt{5b}}{11} \\\\\bf 0 + \frac{7\sqrt{5(1)}}{11} =a+ \frac{7\sqrt{5b}}{11} \\\\on\:comparison\\\\\boxed{\bf a = 0}\\\\and\\\\\boxed{\bf b = 1}

Similar questions