Math, asked by basketballteam, 1 year ago

find the value of a and b :
 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  \frac{7 \sqrt{5} }{11} b

Answers

Answered by Anonymous
19

\mathsf{Question :\;\dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} - \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}}}

Taking LCM :

\mathsf{\implies \dfrac{(7 + \sqrt{5})(7 + \sqrt{5}) - (7 - \sqrt{5})(7 - \sqrt{5})}{(7 - \sqrt{5})(7 + \sqrt{5})}}

\mathsf{\implies \dfrac{(7 + \sqrt{5})^2 - (7 - \sqrt{5})^2}{(7 - \sqrt{5})(7 + \sqrt{5})}}

\mathsf{\implies \dfrac{(7)^2 + (\sqrt{5})^2 + 2(7)\sqrt{5} - [(7)^2 +(\sqrt{5})^2 - 2(7)\sqrt{5}]}{(7 - \sqrt{5})(7 + \sqrt{5})}}

\mathsf{\implies \dfrac{(7)^2 + (\sqrt{5})^2 + 2(7)\sqrt{5} - (7)^2 - (\sqrt{5})^2 + 2(7)\sqrt{5}}{(7 - \sqrt{5})(7 + \sqrt{5})}}

\mathsf{\implies \dfrac{4(7)\sqrt{5}}{(7 -\sqrt{5})(7 + \sqrt{5})}}

\mathsf{\implies \dfrac{28\sqrt{5}}{(7)^2 - (\sqrt{5})^2}}

\mathsf{\implies \dfrac{28\sqrt{5}}{49 - 5}}

\mathsf{\implies \dfrac{28\sqrt{5}}{44}}

\mathsf{\implies \dfrac{7\sqrt{5}}{11}}

\mathsf{\implies 0 + \dfrac{7\sqrt{5}}{11} = a + \dfrac{7\sqrt{5}}{11}b}

Comparing both sides :

●  a = 0

●  b = 1


AnantveerSingh: hlw
Similar questions