Math, asked by pragativ638, 4 months ago

Find the value of a and b.

if =  \frac{ \sqrt{3 - 1} }{  \sqrt{3 + 1} }  = a + b \sqrt{3}

Answers

Answered by vipashyana1
0

Answer:

a = 2 \: and \: b = ( - 1)

Step-by-step explanation:

 \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  = a + b \sqrt{3}  \\  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1} = a + b \sqrt{3}  \\  \frac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} } = a + b \sqrt{3}  \\  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1} = a + b \sqrt{3}  \\  \frac{4 - 2 \sqrt{3} }{2}  = a + b \sqrt{3}  \\  \frac{2(2 -  \sqrt{3}) }{2} = a + b \sqrt{3}  \\ 2 -  \sqrt{3} = a + b \sqrt{3}  \\ a = 2 \: and \: b \sqrt{3}  = ( - 1)

Similar questions