Math, asked by laxmigupta9792, 1 month ago

Find the value of 'a' and 'b' that would make the quadrilateral, a parallelogram.​

Attachments:

Answers

Answered by MathHacker001
25

Question :-

Find the value of 'a' and 'b' that would make the quadrilateral, a parallelogram.

Solution :-

Learn a property

Property : Opposite side of Quadrilateral are same.

According to the property

♣ 5a - 13 = 3a - 5

♣ 8b = 10b - 3

Now,

\sf:\longmapsto{5a - 13 = 3a - 5}  \:  \:  \:  \: \\  \\ \sf:\longmapsto{5 a - 3a = - 5 + 13 } \\  \\ \sf:\longmapsto{2a = 8} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{a =  \cancel{ \frac{8}{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{a = 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

And,

\sf:\longmapsto{8b = 10b - 3} \\  \\ \sf:\longmapsto{10b - 8b = 3} \\  \\ \sf:\longmapsto{2b =  - 3} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{ \frac{ - 3}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

The value of a is 4 and value of b is  \frac{ - 3}{2}  \\ .

Verification :-

Replace the value a = 4

\sf:\longmapsto{5(4) - 13 = 3(4) - 5} \\  \\ \sf:\longmapsto{20 - 13 = 12 - 5} \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{7 = 7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Replace the value of b =   \frac{ - 3}{2}  \\

\sf:\longmapsto{8 \bigg( \frac{ - 3}{2} \bigg) = 10 \bigg( \frac{ - 3}{2}  \bigg) - 3 } \\  \\ \sf:\longmapsto{  \frac{ - 24}{2}  =  \frac{ - 30}{2}  - 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ - 12 =  - 15 - 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \\  \\ \bf:\longmapsto \red{ - 12 =  - 12} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence Verified !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions