Math, asked by saritayadav, 1 year ago

find the value of a and b when a+b√15=√5+√3/√5-√3

Answers

Answered by DaIncredible
13
Heya there !!!
Here is the answer you were looking for:

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}


a + b \sqrt{15} =   \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \\

In R.H.S

On rationalizing the denominator we get,

 =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2}  +  {( \sqrt{3} )}^{2} + 2( \sqrt{5})( \sqrt{3}  ) }{ {( \sqrt{5}) }^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  =  \frac{2(4 +  \sqrt{15}) }{2}  \\  \\  = 4 +  \sqrt{15}

On comparing we get

4 +  \sqrt{15}  = a + b \sqrt{15}  \\  \\ a = 4 \:  :  \: b = 1

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section ^_^

@Mahak24

Thanks...
☺☺
Similar questions