Math, asked by Rangsinasarpo947, 1 year ago

Find the value of a and b, when a+b root 15= root 5+root 3upon root 5-root3

Answers

Answered by DaIncredible
5
Identity used :

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab \\  (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

a + b \sqrt{15}  =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \\

R.H.S,

On rationalizing the denominator we get,

 =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \\  \\  =  \frac{ {( \sqrt{5} )}^{2}  +  {( \sqrt{3} )}^{2}  + 2( \sqrt{5} )( \sqrt{3} )}{ {( \sqrt{5} })^{2} -  {( \sqrt{3}) }^{2}  }  \\  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  = 4 +  \sqrt{15}

On comparing L.H.S and R.H.S we get,

4 +  \sqrt{15}  = a + b \sqrt{15}  \\  \\ a = 4 \:  :  \: b = 1
Similar questions