Find the value of a and bif (7 + sqrt(48))/(7 - sqrt(48)) = a + b * sqrt(3) .
Answers
- a= 97
- b=56
Value of a, b
》 Firstly lets write the sqrt 48 in simplest form
》 Now , lets rationalize the denominator .In order to rationalize the denominator multiply and divide with its Rationalizing factor i.e conjuagate to the denominator .
》 Rationalizing factor of
So, multiply and divide with this .
》 Simplifying the numerator by Algebraic Identitiy (a+b)² = a² + 2ab + b² .
》 Simplifying the denominator by Algebraic Identitiy (a+b)(a-b) = a²-b² .
》 By comparing L.H.S and R.H.S
》 Algebraic Identities :-
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
a= 97
b=56
Value of a, b
》 Firstly lets write the sqrt 48 in simplest form
》 Now , lets rationalize the denominator .In order to rationalize the denominator multiply and divide with its Rationalizing factor i.e conjuagate to the denominator .
》 Rationalizing factor of
So, multiply and divide with this .
》 Simplifying the numerator by Algebraic Identitiy (a+b)² = a² + 2ab + b² .
》 Simplifying the denominator by Algebraic Identitiy (a+b)(a-b) = a²-b² .
》 By comparing L.H.S and R.H.S
》 Algebraic Identities :-
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc