Math, asked by meenakshinavariya, 26 days ago

Find the value of a and bif (7 + sqrt(48))/(7 - sqrt(48)) = a + b * sqrt(3) .​

Answers

Answered by Anonymous
45

\bf\purple{Answer :- }

  • a= 97
  • b=56

\bf\purple{Given :- }

 \dfrac{7 +  \sqrt{48} }{7 -  \sqrt{48} }  = a + b \sqrt{3}

\bf\purple{To\: find :-}

Value of a, b

\bf\purple{Solution:-}

》 Firstly lets write the sqrt 48 in simplest form

 \sqrt{48}  =  \sqrt{2 {}^{4} \times 3 }

 \sqrt{48}  =  \sqrt{(2 {}^{2} ) {}^{2} }  \times  \sqrt{3}

 \sqrt{48}  = 2 {}^{2}  \sqrt{3}

 \red{ \sqrt{48}  = 4 \sqrt{3} }

 \cfrac{7 + 4 \sqrt{3} }{7 - 4 \sqrt{3} }  = a + b \sqrt{3}

》 Now , lets rationalize the denominator .In order to rationalize the denominator multiply and divide with its Rationalizing factor i.e conjuagate to the denominator .

》 Rationalizing factor of

7 - 4 \sqrt{3}  \: is \: 7 + 4 \sqrt{3}

So, multiply and divide with this .

 \cfrac{7 + 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \cfrac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

 =  \cfrac{(7 + 4 \sqrt{3} )(7 + 4 \sqrt{3}) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3} )}  = a + b \sqrt{3}

》 Simplifying the numerator by Algebraic Identitiy (a+b)² = a² + 2ab + b² .

》 Simplifying the denominator by Algebraic Identitiy (a+b)(a-b) = a²-b² .

 \cfrac{(7) {}^{2} + (4 \sqrt{3} ) {}^{2} + 2(7)(4 \sqrt{3}   )}{(7) {}^{2} - (4 \sqrt{3} ) {}^{2}  }

 \cfrac{49 + 48 +56 \sqrt{3}  }{49 - 48} = a + b \sqrt{3}

 \dfrac{97 +56 \sqrt{3}  }{1}  = a + b \sqrt{3}

\red{97 + 56 \sqrt{3}  = a + b \sqrt{3}}

》 By comparing L.H.S and R.H.S

 \red{a = 97} \\  \red{b = 56}

\bf\purple{Know\: more:-}

》 Algebraic Identities :-

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Answered by EmperorSoul
0

\bf\purple{Answer :- }

a= 97

b=56

\bf\purple{Given :- }

 \dfrac{7 +  \sqrt{48} }{7 -  \sqrt{48} }  = a + b \sqrt{3}

\bf\purple{To\: find :-}

Value of a, b

\bf\purple{Solution:-}

》 Firstly lets write the sqrt 48 in simplest form

 \sqrt{48}  =  \sqrt{2 {}^{4} \times 3 }

 \sqrt{48}  =  \sqrt{(2 {}^{2} ) {}^{2} }  \times  \sqrt{3}

 \sqrt{48}  = 2 {}^{2}  \sqrt{3}

 \red{ \sqrt{48}  = 4 \sqrt{3} }

 \cfrac{7 + 4 \sqrt{3} }{7 - 4 \sqrt{3} }  = a + b \sqrt{3}

》 Now , lets rationalize the denominator .In order to rationalize the denominator multiply and divide with its Rationalizing factor i.e conjuagate to the denominator .

》 Rationalizing factor of

7 - 4 \sqrt{3}  \: is \: 7 + 4 \sqrt{3}

So, multiply and divide with this .

 \cfrac{7 + 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \times  \cfrac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

 =  \cfrac{(7 + 4 \sqrt{3} )(7 + 4 \sqrt{3}) }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3} )}  = a + b \sqrt{3}

》 Simplifying the numerator by Algebraic Identitiy (a+b)² = a² + 2ab + b² .

》 Simplifying the denominator by Algebraic Identitiy (a+b)(a-b) = a²-b² .

 \cfrac{(7) {}^{2} + (4 \sqrt{3} ) {}^{2} + 2(7)(4 \sqrt{3}   )}{(7) {}^{2} - (4 \sqrt{3} ) {}^{2}  }

 \cfrac{49 + 48 +56 \sqrt{3}  }{49 - 48} = a + b \sqrt{3}

 \dfrac{97 +56 \sqrt{3}  }{1}  = a + b \sqrt{3}

\red{97 + 56 \sqrt{3}  = a + b \sqrt{3}}

》 By comparing L.H.S and R.H.S

 \red{a = 97} \\  \red{b = 56}

\bf\purple{Know\: more:-}

》 Algebraic Identities :-

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions