Math, asked by harshita0899, 7 months ago

find the value of (a+b)^2 + ( a-b) ^2​

Answers

Answered by Anonymous
4

\huge\bold{{\pink{Q}}{\blue{U}}{\green{E}}{\red{S}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

Find the value of (a+b)²+(a-b)²

\huge\bold{{\pink{T}}{\blue{O}}{\green{  }}{\red{F}}{\purple{I}}{\orange{N}}{\pink{D}}{\green{❥}}}

The value.

\huge\bold{{\pink{S}}{\blue{O}}{\green{L}}{\red{U}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

We know that:

  • \large\bold\pink{\boxed{\pink{(a+b)²=a²+b²+2ab}}}

  • \large\bold\red{\boxed{\red{(a-b)²=a²+b²-2ab}}}

So,

(a+b)²+(a-b)²

= (a²+b²+2ab)+(a²+b²-2ab)

= a²+b²+2ab+a²+b²-2ab

= a²+a²+b²+b²+2ab-2ab

= 2a²+2b²

= 2(a²+b²)

\huge\bold{{\pink{H}}{\blue{E}}{\green{N}}{\red{C}}{\purple{E}}{\green{❥}}}

(a+b)²+(a-b)² = 2(a²+b²)

\huge\bold{{\pink{T}}{\blue{H}}{\green{E}}{\red{R}}{\purple{E}}{\orange{F}}{\pink{O}}{\blue{R}}{\red{E}}{\green{❥}}}

The value of (a+b)²+(a-b)² is 2(a²+b²).

\huge\bold{{\pink{D}}{\blue{O}}{\green{N}}{\red{E}}{\purple{࿐}}}

\bold{\boxed{{\blue{✿}}{\pink{H}}{\blue{O}}{\green{P}}{\red{E}}{\purple{  }}{\orange{T}}{\pink{H}}{\blue{I}}{\green{S}}{\red{  }}{\purple{H}}{\orange{E}}{\pink{L}}{\blue{P}}{\green{S}}{\red{  }}{\purple{Y}}{\orange{O}}{\pink{U}}{\blue{✿}}}}

Answered by avika1424
1

Answer:

- a + b

Step-by-step explanation:

keep in mind: side changing rules and that ... (+ × - = - ) , ( + × + = +) ,( - × - = + )

( a+ b)^2 + (a - b) ^2

(a^2 + b^2) + ( a^2 - b^2)

(a^2 - a^2) + ( b^2 - b^2)

-a + b

Similar questions