Math, asked by kumarstudy7c, 18 days ago

Find the value of: (a – b ) ( a + b ) + ( c + a ) ( c – a ) + ( b + c ) ( b – c ). Also mention the identity used?​

Answers

Answered by riyars080102
1

Answer:

0

Step-by-step explanation:

used identity,

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

(a  -  b) (a + b) + (c + a) (c  -  a) + \\ (b + c) (b  -  c) \\

=  ({a}^{2}  -  {b}^{2}) +  ({c}^{2}  -  {a}^{2})  + ({b}^{2}  -  {c}^{2})

=   {a}^{2}  -  {b}^{2} +  {c}^{2}  -  {a}^{2}  +  {b}^{2}  -  {c}^{2} \\  = 0

Answered by anindyaadhikari13
4

Solution:

Given Expression:

= (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c)

We know that:

→ (x + y)(x - y) = x² - y²

Applying the above identity, we get:

= (a)² - (b)² + (c)² - (a)² + (b)² - (c)²

= (a² - a²) + (b² - b²) + (c² - c²)

= 0

Therefore:

→ (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c) = 0

Which is our required answer.

Answer:

  • (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c) = 0

Learn More:

Algebraic Identities.

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Similar questions