Find the value of: (a – b ) ( a + b ) + ( c + a ) ( c – a ) + ( b + c ) ( b – c ). Also mention the identity used?
Answers
Answered by
1
Answer:
0
Step-by-step explanation:
used identity,
Answered by
4
Solution:
Given Expression:
= (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c)
We know that:
→ (x + y)(x - y) = x² - y²
Applying the above identity, we get:
= (a)² - (b)² + (c)² - (a)² + (b)² - (c)²
= (a² - a²) + (b² - b²) + (c² - c²)
= 0
Therefore:
→ (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c) = 0
★ Which is our required answer.
Answer:
- (a - b)(a + b) + (c + a)(c - a) + (b + c)(b - c) = 0
Learn More:
Algebraic Identities.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Similar questions