Math, asked by bbuddy588, 9 months ago

find the value of a+b+c if the value of (abc)^2 is 900

Answers

Answered by krishagoryani
9

Answer:

abc= 30

a +b+c= 33

OR

a+b+c= 11

OR

a+b+c=14

Step-by-step explanation:

(a x b x c)² = 900

a x b x c = \sqrt{900}

abc= 30

Answered by stefangonzalez246
0

(a+b+c) = 60

Step-by-step explanation:

Given data

abc^{2} = 900

To find - (a+b+c)     ----------> 1

abc^{2} = 900        

Take square root on both sides

abc = 30

Then a = 30 ÷ bc    ----------> 2

         b = 30 ÷ ca   ---------->  3

and   c = 30 ÷ ab    ---------->  4

Add the equations 2, 3 and 4

a + b + c = ( 30 ÷ bc ) + ( 30 ÷ ca ) + ( 30 ÷ ab)

a + b + c = [ { 30 ( ab + ac ) + 30 ( bc + ab ) + 30 ( bc + ac )} ÷ { ab + bc + ca } ]

30 will be taken common on Right hand side

a + b + c = [ { 30 ( ab + ac + bc + ab + bc + ac ) } ÷ { ab + bc + ca } ]

a + b + c = [ { 30 ( 2ab + 2bc + 2ca ) } ÷ { ab + bc + ca } ]

Again 2 will be taken common  

a + b + c = [{ 30 × 2 ( ab + bc + ca )} ÷ { ab + bc + ca }]

a + b + c = [{ 60 ( ab + bc + ca )} ÷ { ab + bc + ca }]

( ab + bc + ca ) ÷ { ab + bc + ca } will be cancelled and equal to 1

a + b + c = 60 (1)

a + b + c = 60

To learn more ...

1. https://brainly.in/question/6266547

2. https://brainly.in/question/1516448

Similar questions