find the value of a+b+c if the value of (abc)^2 is 900
Answers
Answer:
abc= 30
a +b+c= 33
OR
a+b+c= 11
OR
a+b+c=14
Step-by-step explanation:
(a x b x c)² = 900
a x b x c =
abc= 30
(a+b+c) = 60
Step-by-step explanation:
Given data
= 900
To find - (a+b+c) ----------> 1
= 900
Take square root on both sides
abc = 30
Then a = 30 ÷ bc ----------> 2
b = 30 ÷ ca ----------> 3
and c = 30 ÷ ab ----------> 4
Add the equations 2, 3 and 4
a + b + c = ( 30 ÷ bc ) + ( 30 ÷ ca ) + ( 30 ÷ ab)
a + b + c = [ { 30 ( ab + ac ) + 30 ( bc + ab ) + 30 ( bc + ac )} ÷ { ab + bc + ca } ]
30 will be taken common on Right hand side
a + b + c = [ { 30 ( ab + ac + bc + ab + bc + ac ) } ÷ { ab + bc + ca } ]
a + b + c = [ { 30 ( 2ab + 2bc + 2ca ) } ÷ { ab + bc + ca } ]
Again 2 will be taken common
a + b + c = [{ 30 × 2 ( ab + bc + ca )} ÷ { ab + bc + ca }]
a + b + c = [{ 60 ( ab + bc + ca )} ÷ { ab + bc + ca }]
( ab + bc + ca ) ÷ { ab + bc + ca } will be cancelled and equal to 1
a + b + c = 60 (1)
a + b + c = 60
To learn more ...
1. https://brainly.in/question/6266547
2. https://brainly.in/question/1516448