find the value of a + b if a2(a square) + b2(b square)= 34 and ab = 15
Answers
Answered by
1
Answer:
Step-by-step explanation:
We have,
a^{2} +b^{2} =34 and ab=15
To find, the values of a + b and a - b = ?
∴(a+b)^{2} =a^{2}+b^{2}+2ab
⇒ (a+b)^{2} =34+2(15)=34+30=64
⇒ (a+b)^{2}=8^{2}
⇒ a + b = 8 .....(1)
Also,
(a-b)^{2} =(a+b)^{2} -4ab
From (1), we get
(a-b)^{2} =(8)^{2} -4(15)=64-60=4
⇒ (a-b)^{2}=2^{2}
⇒ a - b = 2
Hence, the values of a + b = 8 and a - b = 2.
PLEASE MARK ME AS BRAINLIEST AND THANK ME
Answered by
2
We have a²+b² =34 and ab=15.
(a+b)² = a²+b²+2ab
⇒ (a+b)² = 34+2×15
⇒ (a+b)² = 64
⇒ (a+b)² = 8²
⇒ a+b = 8
Hope it helps u ......
Similar questions