Math, asked by BilalAhmedWaris, 6 hours ago

Find the value of a-b, when a+b=9 and ab=20.

If any of you know the answer to the question, please help me. I want to know the answer to the question ☺️☺️
I have a test for this question tomorrow​

Answers

Answered by mathdude500
5

 \red{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:a + b = 9

and

\rm :\longmapsto\:ab = 20

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:a - b

 \pink{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:a + b = 9

and

\rm :\longmapsto\:ab = 20

We know,

\red{\rm :\longmapsto\:\boxed{\tt{  {(a - b)}^{2} =  {(a + b)}^{2} - 4ab}}}

So, on substituting the values in this identity, we get

\rm :\longmapsto\: {(a - b)}^{2} =  {9}^{2} - 4 \times 20

\rm :\longmapsto\: {(a - b)}^{2} = 81 - 80

\rm :\longmapsto\: {(a - b)}^{2} =1

\bf\implies \:a - b  \: =  \:  \pm \: 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions