find the value of a cube plus b cube plus c cube - 3abc then a + b + C is equal to 8 and a b + BC + CA is equal to 25
Answers
Given :
• a + b + c = 8
• ab + bc + ca = 25
To Find :
• Value of a³ + b³ + c³ - 3abc
Solution :
We know that
★ a³ + b³ + c³ - 3abc = (a+b+c) (a² + b² + c² - ab - bc - ca)
→ a³ + b³ + c³ - 3abc = (a+b+c) {(a² + b² + c²) - (ab + bc + ca)}....i)
Clearly,we require the values of a + b + c, a² + b² + c² and ab + bc + ca to obtain the values of a³ + b³ + c³ - 3abc. We're given the values of a + b + c and ab + bc + ca. So,let us first obtain value of a² + b² + c².
We know that,
★ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)
Put the values of a + b + c and ab + bc + ca
→ (8)² = a² + b² + c² + 2(25)
→ 64 = a² + b² + c² + 50
→ a² + b² + c² = 64 - 50
→ a² + b² + c² = 14
Now,putting a + b + c = 8 and ab + bc + ca = 25 and a² + b² + c² = 14 in equation i), we get :
★ a³ + b³ + c³ - 3abc = (a+b+c) {(a² + b² + c²) - (ab + bc + ca)}
→ a³ + b³ + c³ - 3abc = (8) (14 - 25)
→ a³ + b³ + c³ - 3abc = 8 × -11
→ a³ + b³ + c³ - 3abc = - 88
Value of a³ + b³ + c³ - 3abc = -88
Step-by-step explanation:
i have given you this answer and onther question too