Math, asked by saryka, 1 month ago

⇒ Find the value of a
⇒ Don't spam!​

Attachments:

Answers

Answered by senboni123456
63

Step-by-step explanation:

We have,

 \frac{24 {x}^{2}  + 25x - 47}{ax - 2}  =  - 8x - 3 -  \frac{53}{ax - 2}  \\

  \implies\frac{24 {x}^{2}  + 25x - 47}{ax - 2}  =  - ( \frac{(8x + 3)(ax - 2) + 53}{ax - 2} ) \\

Since,  x ≠ \frac{2}{a}\\, so ax - 2 can be cancelled in both sides

  \implies24 {x}^{2}  + 25x - 47  =  -  (8x + 3)(ax - 2)  -  53 \\

  \implies24 {x}^{2}  + 25x - 47  =  -  (8a {x}^{2} + 3ax  - 16x - 6) -  53 \\

  \implies24 {x}^{2}  + 25x - 47  =  -  8a {x}^{2}  - (3a - 16)x  + 6 -  53 \\

  \implies24 {x}^{2}  + 25x - 47  =  -  8a {x}^{2}   +  (16 - 3a)x   - 47 \\

On comparing both sides, we get,  a = - 3

Answered by MrImpeccable
117

ANSWER:

Given:

\:\:\:\:\bullet\:\:\:\:\dfrac{24x^2+25x-47}{ax-2}=-8x-3-\dfrac{53}{ax-2}

To Find:

  • Value of a.

Solution:

:\longrightarrow\dfrac{24x^2+25x-47}{ax-2}=-8x-3-\dfrac{53}{ax-2}\\\\\text{Taking LCM,}\\\\:\implies\dfrac{24x^2+25x-47}{ax-2}=\dfrac{-8x(ax-2)-3(ax-2)-53}{ax-2}\\\\:\implies\dfrac{24x^2+25x-47}{ax-2}=\dfrac{-8ax^2+16x-3ax+6-53}{ax-2}\\\\\text{Cancelling (ax-2) on both the fractions' denominators.}\\\\:\implies 24x^2+25x-47= -8ax^2+16x-3ax+6-53\\\\:\implies 24x^2+25x-47= -8ax^2+16x-3ax-47\\\\:\implies 24x^2+25x-47= -8ax^2+(16-3a)x-47 \\\\\text{As both the equations are quadratic,}\\\\\text{We compare the coefficients of x$^2$ and x}\\\\:\implies24=(-8a) \:\:\:\:AND\:\:\:\:25=(16-3a)\\\\\text{So,}\\\\:\implies a=-3\:\:\:\:AND\:\:\:\:25-16=-3a\\\\:\implies a=-3\:\:\:\:AND\:\:\:\:9=-3a\\\\:\implies a=-3\:\:\:\:AND\:\:\:\:a=-3\\\\\text{\bf{So, a = -3(option B)}}

\text{\bf{Hence, value of a is -3.}}

Similar questions