Science, asked by Prathamctc18, 1 year ago

find the value of a force of 100 Newton on a system based upon the metre, the kilogram and the minute as the fundamental units

Answers

Answered by AJAYMAHICH
86
Force= Mass × Acceleration

F = m × a

F= mass ×distance / time2 

F =kgm/s2

1 newton = 1 kg × 1 m/(160 min)2
1 newton = 3600 kgmmin/2

100 newton =100 ×3600 kgm/min square



Therefore, 100 N = 360000 kgm/min2

i.e., 100 N = 3.6 ×105 kgm/min2


Thus the value of 100 N is 3.6×105 kgm/min2 in metre, kg, min system as fundamental unit.


Hence, 100 N = 3.6 × 105 kgm min−2


Answered by sourasghotekar123
0

Answer:

The value of a 100 N force in the given fundamental units is 3.6 \times 10^5\; kg\;m\;(min)^2\\.

Explanation:

Given - 100 N force

To find - Force, in terms of a system with metre, kilogram and minute as fundamental units.

Formula - Force = mass \; \times acceleration\\Force = m \times a

Solution -

We know that F = m x a

This can be written as Force = mass \times \frac{distance}{(time)^2}

i.e., F = kg \frac{m}{s^2}                

Now, we can write it as 1 N = 1 kg \times \frac{1 m}{(160 min)^2} \\1 N = 3600\; kg \;m\; min^-^2\\Thus, 100 N = 100 \times 3600\; kg\;m\;(min)^2\\i.e., 100 N = 3.6 \times 10^5\; kg\;m\;(min)^2\\

Thus, the value of 100 N in the given fundamental units can be written as 3.6 \times 10^5\; kg\;m\;(min)^2\\.

#SPJ2

Similar questions