Math, asked by sahooreena691, 5 months ago

find the value of A . I want answer with step by step explaination.​

Attachments:

Answers

Answered by CloseEncounter
64

Question

 \sf{If \:  \:  \dfrac{a³+3a}{3a²+1}=\dfrac{1241}{217}  \:  \:  \:  \:  then \ the \ value\ of\ a}

a)16

b)18

c)17

d)15

\tt{Answer=\green{17}}

Step by step explanation

 \sf{ \Longrightarrow \dfrac{a³+3a}{3a²+1}=\dfrac{1241}{217} }

\sf{ \Longrightarrow \dfrac{a(a^{2} +3)}{3a²+1}=\dfrac{1241}{217} }

\sf{ \Longrightarrow 217a({a^{2} +3})={1241}(3 {a}^{2}  + 1) }

\sf{\Longrightarrow  (217)({a^{2} +3})={1241} \times 3 {a}^{2}  + 1241}

\sf{ \Longrightarrow 217a \times {a^{2}}  +  217a \times 3={1241}(3 {a}^{2}  + 1)}

\sf{  \Longrightarrow217a^{3}  + 651a=3723  {a}^{2}  + 1241}

\sf{\Longrightarrow  217a^{3}  + 651a - 3723 {a}^{2}   - 1241= 0}

  • By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1241 and q divides the leading coefficient 217. List all candidates \frac{p}{q}.

\sf{\Longrightarrow ±\frac{1241}{217},±\frac{1241}{31},±\frac{1241}{7},±1241,±\frac{73}{217},±\frac{73}{31},±\frac{73}{7},±73,±\frac{17}{217},±\frac{17}{31},±\frac{17}{7},±17,±\frac{1}{217},±\frac{1}{31},±\frac{1}{7},±1}

  • Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.

a=17

  • \sf{By\ Factor\ theorem \ , \alpha\ -k\ is\ a\ facto of\ the\ polynomial\ for\ each\ root\ k. }

  • \sf{Divide\ 217\alpha ^{3}-3723\alpha ^{2}+651\alpha -1241 by \alpha -17 to get 217\alpha ^{2}-34\alpha +73. }

  • \sf{Solve\ the\ equation\ where\ the\ result\ equals\ to\ 0.}

  • \sf{217\alpha ^{2}-34\alpha +73=0 }

All equations of the form ax²+bx+c=0 can be solved using the quadratic formula:

\sf{ \frac{-b±\sqrt{b^{2}-4ac}}{2a}.}

\sf{Substitute\ 217\ for\ a,\ -34 for\ b\ and\ 73 for\ c\ in\ the\ quadratic\ formula.}

\sf{\alpha =\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 217\times 73}}{2\times 217}}

\sf{=\alpha =\frac{34±\sqrt{-62208}}{434}}

  • As the square root of a negative number is not defined in the real field, there are no solutions.

\sf{\alpha \in \emptyset }

  • List all found solutions.

a =17

\\ \\ \sf{verification_{\ \ \ \  \Longrightarrow \dfrac{a³+3a}{3a²+1}=\dfrac{1241}{217}} }

 \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \Longrightarrow \dfrac{17³×3×17}{3×17²+1}=\dfrac{1241}{217} }

 \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \Longrightarrow \dfrac{4913×51}{3×289+1}=\dfrac{1241}{217} }

 \sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \Longrightarrow \dfrac{4964}{867+1}=\dfrac{1241}{217} }

 \sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \Longrightarrow \dfrac{4964}{868}=\dfrac{1241}{217} }

 \sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \Longrightarrow \dfrac{\cancel{4964}¹²⁴¹}{\cancel{868}²¹⁷}=\dfrac{1241}{217} }

 \sf{\:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \Longrightarrow \dfrac{1241}{217}=\dfrac{1241}{217} }

 \sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \Longrightarrow LHS=RHS_{~~~\pink{VERIFIED}}}

Attachments:
Answered by Flaunt
405

Question

\sf \large \:  \dfrac{ {a}^{3} + 3a }{3 {a}^{2}  + 1}  =  \dfrac{1241}{217}

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \large \:  \dfrac{ {a}^{3} + 3a }{3 {a}^{2}  + 1}  =  \dfrac{1241}{217}

Now ,cross multiply:

\sf \longmapsto217 {a}^{3}  + 651a = 3723 {a}^{2}  + 1241

\sf \longmapsto217 {a}^{3}  + 651a - 3723 {a}^{2}  - 1241 = 0

\sf \longmapsto217 {a}^{3}  - 3723 {a}^{2}  + 651a - 1241 = 0

\sf \longmapsto217 {a}^{3}  - 3689 {a}^{2}  - 34 {a}^{2}  + 578a + 73a - 1241 = 0

\sf \longmapsto217 {a}^{2} (a - 17) - 34a(a - 17) + 73(a - 17) = 0 = 0

\sf \longmapsto(a - 17)\bold{(217 {a}^{2}  - 34a + 73) }= 0

\sf a - 17 = 0

\sf  \bold{ \red{a = 17}}

217a²-34a+73

\sf a =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

\sf a =   \dfrac{34 \pm \sqrt{ {( - 34)}^{2}  - 4(217)(73)} }{2 \times 217}

\sf a =    \dfrac{34 \pm \sqrt{1156 - 63364} }{434}

\sf a =    \dfrac{34 \pm \sqrt{ - 62208} }{434}

\sf a =    \dfrac{34 \pm \sqrt{62208i} }{434}

Second part is in the form of a quadratic equation so it can be solve through quadratic formula:

We obtained :

\sf  \large \: a =  \dfrac{34 \pm \sqrt{62208i} }{434}

The second value of a which we obtained from quadratic formula is imaginary means not a real value.So,the real value of a is 17

 \sf\large\bold{∴} \sf\large\bold{\red{a=17}}

Similar questions