Math, asked by GunikaKaur, 5 days ago

find the value of a if 6a² = 23² - 17²​

Answers

Answered by aditiaarya2009
0

Step-by-step explanation:

Given:

6x = 23² - 17²

Now,

23² - 17²

Of the form a² - b²

=(23+17)(23-17)

=40×6

=240

Thus,

\begin{gathered}6x = 240 \\ \\ \implies \: x = \frac{240}{6} \\ \\ \implies \: \huge \boxed{x = 40}\end{gathered}

6x=240

⟹x=

6

240

x=40

•Identities used:

a² - b² = (a+b)(a-b)

•Some important identities:

(a + b)²= (a+b)(a+b)=a² +2ab + b²

(a - b)² = (a-b)(a-b)=a² -2ab + b²

(x+a)(x+b) = x² +(a+b)x + ab

Answered by scs758374
1

Answer:

6a^2=23^2-17^2

6a^2=529-289

6a^2=240

a^2=240/6

a^2=40

a=√40

a=6.32

Similar questions