find the value of a if 6a² = 23² - 17²
Answers
Answered by
0
Step-by-step explanation:
Given:
6x = 23² - 17²
Now,
23² - 17²
Of the form a² - b²
=(23+17)(23-17)
=40×6
=240
Thus,
\begin{gathered}6x = 240 \\ \\ \implies \: x = \frac{240}{6} \\ \\ \implies \: \huge \boxed{x = 40}\end{gathered}
6x=240
⟹x=
6
240
⟹
x=40
•Identities used:
a² - b² = (a+b)(a-b)
•Some important identities:
(a + b)²= (a+b)(a+b)=a² +2ab + b²
(a - b)² = (a-b)(a-b)=a² -2ab + b²
(x+a)(x+b) = x² +(a+b)x + ab
Answered by
1
Answer:
6a^2=23^2-17^2
6a^2=529-289
6a^2=240
a^2=240/6
a^2=40
a=√40
a=6.32
Similar questions