Math, asked by adil8680, 1 month ago

Find the value of'a'if int_(2)^(a)(x+1)dx=(7)/(2)​

Answers

Answered by senboni123456
8

Step-by-step explanation:

We have,

 \rm \int^{a}_{2}(x + 1)dx =  \frac{7}{2}   \\

 \rm   \implies  \bigg [ \frac{ {x}^{2} }{2}  + x \bigg] ^{a}_{2}  =  \frac{7}{2}   \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a -  \frac{ {2}^{2} }{2}  - 2 =  \frac{7}{2}   \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a -  \frac{ 4}{2}  - 2 =  \frac{7}{2}   \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a - 2- 2 =  \frac{7}{2}   \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a - 4=  \frac{7}{2}   \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a =  \frac{7}{2}  + 4  \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a =  \frac{7 + 8}{2}    \\

 \rm   \implies  \frac{ {a}^{2} }{2}  + a =  \frac{15}{2}    \\

 \rm   \implies   {a}^{2}   + 2a =  15  \\

 \rm   \implies   {a}^{2}   + 2a  -   15   = 0\\

 \rm   \implies   {a}^{2}   + 5a  - 3a -   15   = 0\\

 \rm   \implies   a (a  + 5) - 3(a  +   5 )  = 0\\

 \rm   \implies  ( a - 3) (a  + 5)  = 0\\

 \rm   \implies   a  =  3 \:  \: or \:  \: a   =  -  5\\

Since, upper limit must be greater than lower limit, so, \rm\:a=3

Similar questions