Math, asked by Abir456, 7 months ago

Find the value of 'a" if one zero of polynomial (a^2 +1)x^2 + 56x + 2a is reciprocal of the other.​

Answers

Answered by Anonymous
4

\;\;\underline{\textbf{\textsf{ Given:-}}}

•One zero of the quadratic polynomial

(a² + 1)x² + 56x + 2a is reciprocal to other.

\;\;\underline{\textbf{\textsf{ To Find :-}}}

•The value of " a "

\;\;\underline{\textbf{\textsf{ Formula used   :-}}}

Product of zeroes = \sf \dfrac{constant \: term}{coefficient \: of \: x^2}

\;\;\underline{\textbf{\textsf{ Solution  :-}}}

Here, we know

Product of zeroes = \sf \dfrac{constant \: term}{coefficient \: of \: x^2}

Let the zeroes of the quadratic polynomial be α and 1/α.

\longrightarrow \sf \alpha \times \frac{1}{\alpha} = \frac{2a}{a^2 +1}\\\\ \longrightarrow \sf 1 = \frac{2a}{a^2 +1}\\\\\longrightarrow  \sf a^2 +1=2a \\\\\longrightarrow  \sf a^2 - 2a + 1 = 0

\:\:\:\:\dag\bf{\underline \green{Using\:splitting\:middle \:term:-}}

( It’s is a method for factoring quadratic equations.)

\sf  \longrightarrow a^2 - a - a + 1 = 0\\\\\\\sf \longrightarrow  a(a-1)-1(a-1)= 0 \\\\\longrightarrow \sf (a-1)(a-1)= 0\\\\\longrightarrow \sf a = 1

\:\:\:\:\dag\bf{\underline{\underline \green{Hence:-}}}

The value of a is = 1

_____________________________________________

Similar questions