Math, asked by nivedita43, 3 months ago

Find the value of a if
6a =  {73}^{2}  -  {67}^{2}

Answers

Answered by ranjanaayush89
3

Answer:

140

Step-by-step explanation:

6a=5329-4489

6a=840

a=840/6=140

i hope answer given help you and mark in brain list of observation

Answered by MrImpeccable
13

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • 6a = 73² - 67²

To Find:

  • Value of a

Solution:

⇒ 6a = 73² - 67²

We know that,

➡ a² - b² = (a+b)(a-b)

So,

⇒ 6a = (73-67)(73+67)

⇒ 6a = 6 * 140

⇒ a = (6 * 140)/(6)

⇒ a = 140

Formula Used:

  • a² - b² = (a+b)(a-b)

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions