Math, asked by sRishikkumar, 10 months ago

Find the value of a if the distance between the points ( a,2) ( 3,4) is 2 root 2

Answers

Answered by Anonymous
1

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Find the value of a if the distance between the points ( a,2) ( 3,4) is 2√2.

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given points,

  • A(a, 2)
  • B(3, 4)

To find,

  • Value of a.

Distance between A & B :

  • AB = 2√2

Let,

  • x1 = a, y1 = 2
  • x2 = 3, y2 = 4

By using Distance formula...

 \tt\purple{ Distance  \: formula : \sqrt{ {(x_{2} - x_{1})}^{2}  +  {(y_{2 }- y_{1})}^{2} } }

  • Substitute the values.

\sf\:⟹ 2\sqrt{2} =  \sqrt{ {(3 - a)}^{2}  +  {(4 - 2)}^{2} } </p><p>

\sf\:⟹ 2\sqrt{2} =  \sqrt{ {(3 - a)}^{2}  +  {(2)}^{2} }

  • Squaring on both sides.

\sf\:⟹ (2\sqrt{2})^{2} = ( \sqrt{ {(3 - a)}^{2}  +  {(2)}^{2} })^{2}</p><p>

\sf\:⟹ 8 = (3 - a)^{2} + (2)^{2}

  • (a - b)² = a² + b² - 2ab

\sf\:⟹ 8 = (3)^{2}  +  (a)^{2} - 2(3)(a) + 4

\sf\:⟹ 8 = 9  +  a^{2} - 6a + 4

\sf\:⟹ 8 = a^{2} - 6a + 13

\sf\:⟹ a^{2} - 6a + 13 - 8 = 0

\sf\:⟹ a^{2} - 6a + 5 = 0

\sf\:⟹ a^{2} - a - 5a + 5 = 0

\sf\:⟹ a(a - 1) - 5(a - 1) = 0

\sf\:⟹ (a - 1)(a - 5) = 0

\sf\:⟹ a - 1 = 0 ; a - 5 = 0

\sf\:⟹ a = 0 + 1 ; a = 0 + 5

\sf\:⟹ a = 1 ; a = 5

\underline{\boxed{\bf{\purple{∴ Hence,  \: the \:  value \:  of  \: a = 1  \: (or) \:  5}}}}

Similar questions