Math, asked by Anonymous, 23 days ago

Find the value of a, if the distance between the points P(3, -6) and Q(-3, a) is 10 units.

Pls Don’t Post Irrelevant answer :)

Answers

Answered by BrainlyRish
29

Given that , The points P(3, -6) and Q(-3, a) and the distance between the points is 10 units .

Exigency To Find : The Value of a ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀▪︎⠀We know that to calculate the Distance between two points if we have given with co – ordinates of the two points ( x₁ , y₁ ) and ( x₂ , y₂ ) we use Distance Formula and that's given by :

\qquad \star \:\:\underline {\boxed {\pmb{\sf { \:Distance \: =\: \: \sqrt{ \bigg( x_2 - x_1 \bigg)^2 + \bigg(  y_2 - y_1 \bigg)^2 \:}}}}}\\\\

⠀⠀⠀⠀⠀Here ,

  • x₂ = – 3 ,

  • x₁ = 3 ,

  • y₂ = a ,

  • y₁ = – 6 &,

  • Distance between these points is 10 units .

\\\\\\\qquad:\implies \sf \:Distance \: =\: \: \sqrt{ \bigg( x_2 - x_1 \bigg)^2 + \bigg(  y_2 - y_1 \bigg)^2} \\ \\\\ \qquad:\implies \sf \:10 \: =\: \: \sqrt{ \bigg( (-3) - 3 \bigg)^2 + \bigg(  ( a )  - ( – 6 ) \bigg)^2} \\\\\\ \qquad:\implies \sf \:10 \: =\: \: \sqrt{ \bigg( (-3) - 3 \bigg)^2 + \bigg(  a   + 6  \bigg)^2 }\\\\\\\qquad:\implies \sf \:10 \: =\: \: \sqrt{ \bigg( -6 \bigg)^2 + \bigg(  a   + 6  \bigg)^2} \\\\\\ \qquad:\implies \sf \:\bigg( 10 \bigg)^2 \: =\: \:\Bigg( \sqrt{ \bigg( -6 \bigg)^2 + \bigg(  a   + 6  \bigg)^2}\Bigg)^2 \\\\\\  \qquad:\implies \sf \:100\: =\: \:\ \bigg( -6 \bigg)^2 + \bigg(  a   + 6  \bigg)^2  \\\\\\  \qquad:\implies \sf \:100\: =\: \:\ \bigg( 36 \bigg) + \bigg(  a   + 6  \bigg)^2  \\\\\\  \qquad:\implies \sf \:100\: - 36 =\: \: \bigg(  a   + 6  \bigg)^2  \\\\\\  \qquad:\implies \sf \:64 =\: \: \bigg(  a   + 6  \bigg)^2  \\\\\\   \qquad:\implies \sf \sqrt{\:64 } =\: \: \sqrt{ \bigg(  a    + 6  \bigg)^2  } \\\\\\   \qquad:\implies \sf \:8 =\: \: \bigg(  a   + 6  \bigg) \\\\\\    \qquad:\implies \sf \:8 =\: \:  a   + 6  \\\\ \\    \qquad:\implies \sf \:a=\: \:  8 - 6  \\\\\\      \qquad:\implies \underline {\boxed {\pmb{\frak{  \:a =\: \:  2 }}}}\:\: \bigstar \\\\ \\

\qquad \therefore \:\underline {\sf Hence,  \:The \:Value \:of \:a \:is \:\pmb{\bf{2}}\:.}\\\\

Similar questions