find the value of 'a' if the points (a,3)(6,-2) (-3,4) are collinear
Answers
Answered by
0
the value of a is two
navarash:
sorry wrong answer
Answered by
0
hiii! folk.................
A(a,3), B(6,-2),C(-3,4)
A____________B______________ C
By using distance formula
AB=√(6-a)^2+(-2-3)^2
AB=√(61+a^2-12a)-----------_1)
Now,
BC lenght.by distance formula,
BC=√(6+3)^2+(-4-2)
BC=√9^2+(-6^2)
=)√81+36
BC=√117.------------2)
And finally ,we will find length of AC.
AC=√(-3-a)^2+(3-4)^2
AC=√9+a^2+6a+1
AC=√10+a^2+6a----------3)
As you know that when a line is collinier
then follow
★AC=AB+BC
so,Acording to above ....statement.
it may AC^2=AB^2+BC^2
from 1) 2)and 3 we get.
so,. √(10+a^2+6a)^2=√(61+-12aa^2)^2+√(117)^2
=)10+a^2+6a=61+a^2-6a+117
=)12a=168
=)a=168/12
=)a=14.Answer........
Hope it help you......☺
@rajukumar☺☺1☺☺
A(a,3), B(6,-2),C(-3,4)
A____________B______________ C
By using distance formula
AB=√(6-a)^2+(-2-3)^2
AB=√(61+a^2-12a)-----------_1)
Now,
BC lenght.by distance formula,
BC=√(6+3)^2+(-4-2)
BC=√9^2+(-6^2)
=)√81+36
BC=√117.------------2)
And finally ,we will find length of AC.
AC=√(-3-a)^2+(3-4)^2
AC=√9+a^2+6a+1
AC=√10+a^2+6a----------3)
As you know that when a line is collinier
then follow
★AC=AB+BC
so,Acording to above ....statement.
it may AC^2=AB^2+BC^2
from 1) 2)and 3 we get.
so,. √(10+a^2+6a)^2=√(61+-12aa^2)^2+√(117)^2
=)10+a^2+6a=61+a^2-6a+117
=)12a=168
=)a=168/12
=)a=14.Answer........
Hope it help you......☺
@rajukumar☺☺1☺☺
Similar questions