Math, asked by adhirajmalhotra2006, 11 months ago

Find the value of a, if the polynomials ax 3 + 3x 2 – 3 and 2x 2 – 5x + a when divided by x– 4, leave the same remainder.

Answers

Answered by linkan58
2

Answer:

Answer:The answer is -11/21. Hope it helps.

Answer:The answer is -11/21. Hope it helps.Mark me brainliest. Follow me.

Attachments:
Answered by CharmingPrince
20

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

Find the value of a, if the polynomials ax 3 + 3x 2 – 3 and 2x 2 – 5x + a when divided by x– 4, leave the same remainder..

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

──────────────────────

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

p(x) = ax^3 + 3x^2 -3

f(x) = 2x^2 - 5x + a

g(x) = x-4

x- 4 = 0 \implies x = 4

\boxed{\red{\bold{Finding \ remainders \ 1:}}}

p(x) = ax^3 + 3x^2 -3

p(4) = a(4)^3 + 3(4)^2 - 3

p(4) = 64a + 48 - 3

p(4) = 64a + 45

R_1 = 64a + 45

\boxed{\red{\bold{Finding \ remainder \ 2:}}}

f(x) = 2x^2 - 5x + a

f(4) = 2(4)^2 - 5(4) + a

f(4) = 32 - 20 + a

f(4) = 12 + a

R_2 = 12 + a

\boxed{\red{\bold{Given \ relation:}}}

R_1 = R_2

64a + 45 = 12 + a

63 a = - 33

a = \displaystyle\frac{-11}{21}

──────────────────────

Similar questions