find the value of a if (x+a) is a factor of x^3+ax^2-2x+a+4
Answers
Answered by
6
given, p(x)=x^3 + ax^2 - 2x + a + 4 _eq(1)
let g(x ) = x + a = 0 , x = - a
put value of ' x ' in eq(1). we get ,
p(-a)= (-a)^3 + a(-a)^2 - 2(-a) + a + 4
p(-a)= - a^3 + a^3 + 2a + a + 4
p(-a)= 3a + 4
g(x) will be a factor of p(x) if p(-a)=0, so now
p( -a) = 0
3a + 4 = 0
3a = - 4
a = - 4/ 3
_____________________________
Your Answer: a = - 4/3
_____________________________
let g(x ) = x + a = 0 , x = - a
put value of ' x ' in eq(1). we get ,
p(-a)= (-a)^3 + a(-a)^2 - 2(-a) + a + 4
p(-a)= - a^3 + a^3 + 2a + a + 4
p(-a)= 3a + 4
g(x) will be a factor of p(x) if p(-a)=0, so now
p( -a) = 0
3a + 4 = 0
3a = - 4
a = - 4/ 3
_____________________________
Your Answer: a = - 4/3
_____________________________
Similar questions