Math, asked by BhSam, 9 months ago

Find the value of 'a' , if x-a is a factor of x³-a²x+x+2

Answers

Answered by amankumaraman11
6

Here,

 \sf{}p(x) =  {x}^{3}  -  {xa}^{2}  + x + 2

 \sf{}f(x) = x - a

Given that,

  • f(x) is factor of p(x). Therefore, f(x) completely divides p(x).

Now,

 \rm{}f(x) = x - a = 0 \\  \rm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \to \: \:  \:  \:  \:  \:  \:  x = a \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(i)

Then,

 \large \rm{}p(x)  =  {x}^{3}  -  {xa}^{2} + x + 2 \\   \\ \rm{}p(a) =  {a}^{3}  -  {(a)a}^{2}  + a + 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \to \cancel {{a}^{3}  }-  \cancel {{a}^{3}  }+ a + 2 = 0 \\   \:  \:  \:  \:  \:  \:  \:  \: \rm \to \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a + 2 = 0 \\  \:  \:  \:  \:  \:  \:  \:  \: \rm \to \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: a =   \red{- 2}

Thus,

  • Value of a is -2.
Similar questions