English, asked by harshshivaay, 1 month ago

Find the value of a in the following :
5+2√3 / 7+4√3 = a - 6√3​

Answers

Answered by shj0570515
4

Answer:

a = 11 and b = - 6

Explanation:

Answered by SachinGupta01
33

 \underline{ \large{ \sf Solution  - }}

 \sf   \implies \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - 6 \sqrt{3}

Here, we need to find : Value of a = ?

On taking LHS,

 \sf   \implies \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }

Multiplying the conjugate of the denominator to the fraction.

 \sf   \implies \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times \dfrac{7  -  4 \sqrt{3} }{7  -  4 \sqrt{3} }

Combine the fractions,

 \sf   \implies \:  \dfrac{(5 + 2 \sqrt{3}) (7  -  4 \sqrt{3})}{(7 + 4 \sqrt{3} )(7  -  4 \sqrt{3} )}

We know that,

 \sf   \implies \: \boxed{\sf  (a + b) (a - b) = (a)^{2}  -  (b) ^{2} }

So,

 \sf   \implies \:  \dfrac{(5 + 2 \sqrt{3}) (7  -  4 \sqrt{3})}{(7) ^{2}   - (4 \sqrt{3} )^{2} }

 \sf   \implies \:  \dfrac{(5 + 2 \sqrt{3}) (7  -  4 \sqrt{3})}{49   - 48 }

 \sf   \implies \:  \dfrac{(5 + 2 \sqrt{3}) (7  -  4 \sqrt{3})}{1}

 \sf   \implies \: (5 + 2 \sqrt{3}) (7  -  4 \sqrt{3})

 \sf   \implies \: 5  \times 7 + 5(-  4 \sqrt{3}) + 2 \sqrt{3}  \times 7 + 2 \sqrt{3} ( - 4 \sqrt{3} )

 \sf   \implies \: 35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24

 \sf   \implies \:  11- 20 \sqrt{3}  + 14 \sqrt{3}

 \bf   \implies \:  11- 6 \sqrt{3}

Then,

 \sf \implies \:  11- 6 \sqrt{3}  = a - 6 \sqrt{3}

Thus,

  • Value of a = 11

BrainlyPhantom: Nice answer :D
Similar questions