Math, asked by abidhasan3126, 3 months ago

find the value of A plzz help​

Attachments:

Answers

Answered by Anonymous
0

Answer:

\sf{2xa=(x+ \dfrac{x^{2}}{y^{2}})^{2}-(x-\dfrac{x^{2}}{y^{2}})^{2}}

\implies\sf{xa=x^{2}+\dfrac{x^{4}}{y^{4}}}

\therefore\sf{a=x+\dfrac{x^{3}}{y^{4}}}

Answered by MrImpeccable
17

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  2xa = \left(x + \dfrac{x^2}{y^2}\right)^2 - \left(x - \dfrac{x^2}{y^2}\right)^2

To find:

  • Value of "a".

Solution:

 2xa = \left(x + \dfrac{x^2}{y^2}\right)^2 - \left(x - \dfrac{x^2}{y^2}\right)^2 \\ \\ We\:know\:that, \:\:\:\:\:p^2 - q^2 = (p+q)*(p-q)\\ \\So,\\ \\ \implies 2xa = \left(x + \dfrac{x^2}{y^2}\!\!\!\!\bold\Large{{/}} + x - \dfrac{x^2}{y^2} \!\!\!\!\bold\Large{{/}} \right) \times \left(x \!\!\!\!\bold{/} + \dfrac{x^2}{y^2} - x \!\!\!\!\bold{/} + \dfrac{x^2}{y^2}\right) \\ \\ \implies 2\!\!\!\bold{/}x\!\!\!\bold{/}a = 2\!\!\!\bold{/}x\!\!\!\bold{/} \times \left(\dfrac{2x^2}{y^2} \right) \\ \\ \implies \bold{ a = \dfrac{2x^2}{y^2} }\\ \\

Formula Used:

  •  p^2 - q^2 = (p+q)*(p-q)

Hope it helps!

Similar questions