Find the value of A. Sin 120 degrees B. Tan 150 degrees C. Cos (-135 degrees) D. Sec 300 degrees E. Sin 240 - cos 330 degrees
Answers
Answered by
3
sin 120 = 2 sin 60 cos 60 = 2 * root(3)/2 * 1/2
Tan 150 = tan (180-30) = - tan 30 = - 1/root(3)
Cos (-135) = Cos 135 = - Cos (180-135) = - Cos 45 = -1/root(2)
Sec 300 = 1/cos 300 = 1/Cos (360-60) = 1/Cos 60 = 2
Sin 240 - cos 330 = Sin (180+60) - Cos (360-30) = - sin 60 - cos 30 = 0
Tan 150 = tan (180-30) = - tan 30 = - 1/root(3)
Cos (-135) = Cos 135 = - Cos (180-135) = - Cos 45 = -1/root(2)
Sec 300 = 1/cos 300 = 1/Cos (360-60) = 1/Cos 60 = 2
Sin 240 - cos 330 = Sin (180+60) - Cos (360-30) = - sin 60 - cos 30 = 0
kvnmurty:
click on thank you link
Answered by
3
Sin 120 = 2 sin 60 cos 60
= 2 × √3/2 × 1/2
=√3/2
B. Tan 150
= tan (180-30)
= - tan 30
= - 1/√3
C . Cos (-135)
= Cos 135
= - Cos (180-135)
= - Cos 45
= -1/√2
D . Sec 300
= 1/cos 300
= 1/Cos (360-60)
= 1/Cos 60
= 2
E . Sin 240 - cos 330
= Sin (180+60) - Cos (360-30)
= - sin 60 - cos 30
= 0
= 2 × √3/2 × 1/2
=√3/2
B. Tan 150
= tan (180-30)
= - tan 30
= - 1/√3
C . Cos (-135)
= Cos 135
= - Cos (180-135)
= - Cos 45
= -1/√2
D . Sec 300
= 1/cos 300
= 1/Cos (360-60)
= 1/Cos 60
= 2
E . Sin 240 - cos 330
= Sin (180+60) - Cos (360-30)
= - sin 60 - cos 30
= 0
Similar questions