Math, asked by vikrantchaudhary786, 2 months ago

find the value of a so that expression x^2-(a+2)x+4 is always positive​

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\: {ax}^{2} + bx + c > 0 \: iff \: a > 0 \: and \:  {b}^{2} - 4ac < 0

Now,

Given that,

The quadratic expression is

\rm :\longmapsto\:f(x) =  {x}^{2} - (a + 2)x + 4

On comparing with

\rm :\longmapsto\: {ax}^{2} + bx + c, \: we \: get

 \red{\rm :\longmapsto\:a = 1}

 \red{\rm :\longmapsto\:b =  - (a + 2)}

 \red{\rm :\longmapsto\:c = 4}

Since,

\rm :\longmapsto\:a = 1 > 0

and

To the expression,

\rm :\longmapsto\:f(x) =  {x}^{2} - (a + 2)x + 4 > 0

we must have

\rm :\longmapsto\: {\bigg( - (a + 2)\bigg) }^{2} - 4 \times 4 \times 1 < 0

\rm :\longmapsto\: {a}^{2} + 4 + 4a - 16 < 0

\rm :\longmapsto\: {a}^{2} + 4a - 12 < 0

\rm :\longmapsto\: {a}^{2} + 6a - 2a - 12 < 0

\rm :\longmapsto\:a(a + 6) - 2(a + 6) < 0

\rm :\longmapsto\:(a + 6)(a - 2) < 0

\bf\implies \:a \:  \in \: (-6, 2)

Additional Information :-

Let a and b are real numbers such that a > b, then

\rm :\longmapsto\:(x - a)(x - b) < 0 \implies \: b < x < a

\rm :\longmapsto\:(x - a)(x - b)  \leqslant  0 \implies \: b  \leqslant  x  \leqslant  a

\rm :\longmapsto\:(x - a)(x - b)  >  0 \implies \: \in \: ( \infty ,b) \:  \cup \: (a, \infty )

\rm :\longmapsto\:(x - a)(x - b)   \geqslant   0 \implies \: \in \: ( \infty ,b] \:  \cup \: [a, \infty )

\rm :\longmapsto\:(x + a)(x + b) < 0 \implies \:  - a < x <  - b

\rm :\longmapsto\:(x + a)(x + b)  \leqslant  0 \implies \:  - a  \leqslant  x  \leqslant   - b

Answered by Anonymous
1

Answer:

is it previous class questions?

Similar questions