Math, asked by ghyt13, 1 year ago

Find the value of 'a' such that the sum of the squares of the roots of the equation x2 - (a-2)x - (a+1) = 0 is least.​

Answers

Answered by Gautam22121998
4

sum of roots of quadratic equation

= -(co-efficient of x)/(co-efficient of x²)

= a-2/1

= a-2

product of roots= -(a+1)

let's assume the two roots of the equation to be 'm' and 'n'

then

(m+n)²=m²+n²+2mn

Attachments:
Answered by BraɪnlyRoмan
70

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

 \sf{Let \:  \alpha  \: and \:  \beta  \: be \: the \: roots \: of \: the \: equation}

 \sf{\therefore \:  \alpha  +  \beta  =  \frac{ - b}{a}}

 \sf { \implies \:  \alpha  +  \beta  = a - 2}

and

 \sf {\implies \:   \alpha  \beta  =  \frac{c}{a} }

 \sf{ \implies \:  \alpha  \beta  =  - (a + 1)}

Now,

 \implies \:  \sf{ { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }

Putting the values we get,

 =   \sf{\:  {(a - 2)}^{2}  + 2( a + 1)}

 =  \:  \sf{({a}^{2}  + 4 - 4a) + 2a + 2}

 =   \sf{{a}^{2}  + 1 + 3 - 2a + 2}

 =  \:  \sf{ ({a}^{2}  + 1 - 2a )+ 3 + 2 }

 =  \sf {{(a - 1)}^{2}  + 5}

Now,

{ \alpha }^{2}  +  { \beta }^{2} will be minimum only when

 \implies \:  \sf{ {(a - 1)}^{2}  = 0}

 \sf{ \implies \: (a - 1) = 0}

  \sf{\implies \: a = 1}

 \boxed{ \sf{Hence,  \: a = 1}}

Similar questions