Math, asked by ipsitaparida180, 7 months ago

find the value of A when cos 2A=sin3A​

Answers

Answered by Anonymous
7

Answer :-

  • 18°

Given :-

  • cos2A = sin3A

To Find :

  • Value of A.

Formula used :-

  • cos = (90° - sinA)

Solution :-

cos2A = sin3A

→ sin (90° - 2A) = sin3A

→ 90° - 2A = 3A

→ 90° = 3A + 2A

→ 90° = 5A

→ A = 90°/5

→ A = 18°

Hence, the value of A is 18°.

More To Know :-

  • sin (90° - A) = cosA

  • tan (90° - A) = cotA

  • cot (90° - A) = tanA

  • sec (90° - A) = cosecA

  • cosec (90° - A) = secA
Answered by Anonymous
3

Answer :

Given :

• 2A = sin3A

To Find :

Value of A

Solution :

\:\:\:\:\:\:\leadsto \sf{cos \theta \:=\: sin (90°\:-\: \theta)} \\

\sf sin(90°\:-\:2A)\:=\:sin3A \\

\sf 90°\:-\:2A\:=\:3A \\

\sf 90° \:=\: 3A\:+\:2A \\

\sf 90° \:=\: 5A \\

\sf A\:=\: \dfrac{90°}{5} \\

\sf A\:=\:18° \\

Value of A is 18°

_________________________

Similar questions