find the value of A when cos 2A=sin3A
Answers
Answered by
7
Answer :-
- 18°
Given :-
- cos2A = sin3A
To Find :
- Value of A.
Formula used :-
- cos = (90° - sinA)
Solution :-
cos2A = sin3A
→ sin (90° - 2A) = sin3A
→ 90° - 2A = 3A
→ 90° = 3A + 2A
→ 90° = 5A
→ A = 90°/5
→ A = 18°
Hence, the value of A is 18°.
More To Know :-
- sin (90° - A) = cosA
- tan (90° - A) = cotA
- cot (90° - A) = tanA
- sec (90° - A) = cosecA
- cosec (90° - A) = secA
Answered by
3
Answer :
Given :
• 2A = sin3A
To Find :
• Value of A
Solution :
➪
➪
➪
➪
➪
➪
• Value of A is 18°
_________________________
Similar questions