Math, asked by ashwatiunair5821, 16 days ago

Find the value of 'a' when the distance between the point (3,a) and (4,1) is root over 10.

Answers

Answered by Bidikha
3

Answer:

Let, the points be P(3,a) and Q(4,1)

PQ =  \sqrt{(4 - 3) {}^{2}  + (1 - a) {}^{2} }

 \sqrt{10}  =  \sqrt{1 {}^{2}  + (1 - a) {}^{2} }

10 =  {1}^{2}  + 1 +  {a}^{2}  - 2a

10 = 1 + 1 +  {a}^{2}  - 2a

10 = 2  +  {a}^{2}  - 2a

 {a}^{2}  - 2a - 8 = 0

 {a}^{2}  - (4 - 2)a - 8 = 0

 {a}^{2}  - 4a + 2a - 8 = 0

a(a - 4) + 2(a - 4) = 0

(a-4)(a+2)=0

Either,

a-4=0

a=4

Or,

a+2=0

a=-2

Therefore the value of a is 4 and - 2

Answered by Anonymous
18

 \footnotesize \tt  \red{   Given:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red\bullet\footnotesize \tt {  \:   Distance =  \sqrt{10} }

\red\bullet \footnotesize \tt {    \: A = (3,a)}

 \red\bullet\footnotesize \tt { \:    B = (4,1)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt  \red{   Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red\bullet\footnotesize \tt { \:    x2 = 4}

 \red\bullet\footnotesize \tt { \:    x1 = 3}

 \red\bullet\footnotesize \tt { \:    y2 = 1}

 \red\bullet\footnotesize \tt { \:    y1 = a}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Distance \:  (AB) = \:  \sqrt{(x2 - x1)^{2}  +  (y2 - y1)^{2}}}

 \footnotesize \tt{ \sqrt{10} = \:  \sqrt{(4 - 3)^{2}  +   (1 - a)^{2}}  }

 \footnotesize \tt{ \sqrt{10} = \:  \sqrt{(1)^{2}  + (1) ^{2}    - 2a+ a^{2}}  }

 \footnotesize \tt{ \sqrt{10} = \:  \sqrt{1 + 1    - 2a+ a^{2}}  }

 \footnotesize \tt{ \sqrt{10} = \:  \sqrt{2    - 2a+ a^{2}}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt  \red{   Squaring \:  both \:  sides }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ (\sqrt{10})^{2} = \:  \sqrt{(2    - 2a+ a^{2}})^{2}   }

 \footnotesize \tt{ 10 = \: {2    - 2a+ a^{2}}   }

 \footnotesize \tt{  -  {a}^{2}  + 2a = 2 - 10   }

 \footnotesize \tt{  -  {a}^{2}  + 2a =  - 8   }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt  \red{   Now \:  divide \:  it \:  by \:  (-1) }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{   {a}^{2}   -  2a =  8   }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt  \red{   Now  \: factorise \:  it  \: by  \: middle \:  term \:  splitting  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{   {a}^{2}   -  2a - 8 =0 }

 \footnotesize \tt{   {a}^{2}   -  4a   + 2a- 8 =0 }

 \footnotesize \tt{ a(a  -  4) + 2(a- 4)=0 }

 \footnotesize \tt{ (a + 2)(a  -  4)=0 }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ a + 2=0 }

\boxed{ \underline{ \underline{ \footnotesize \tt \red \bullet{  \: a = - 2}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ a  -  4=0 }

\boxed{ \underline{ \underline{\footnotesize \tt \red \bullet{  \: a   = 4 }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt  \red{   Value  \: of  \: a \:  can \:  be  \: -2 \:  or \:  4}

Attachments:
Similar questions